SONA COLLEGE OF TECHNOLOGY, SALEM-5

(An Autonomous Institution)

B.E- Electronics and Communication Engineering

CURRICULUM and SYLLABI

[For students admitted in 2018-2019]

B.E / B.Tech Regulation 2015R

Approved by BOS and Academic Council meetings

Sona College of Technology, Salem – 636 005 (An Autonomous Institution) Courses of Study for BE / BTech Semester I under Regulations 2015R (CBCS)

Branch: ECE

S.No.	Course Code	Course Title	L	Т	Р	С	Group code
		Theory					
1	U15ENG101AR	Technical English – I	2	0	2	3	HS
2	U15MAT102CR	Mathematics – I for ECE	3	2	0	4	BS
3	U15PHY103BR	Physics for ECE	4	0	0	4	BS
4	U15CHE104BR	Applied Chemistry	3	0	0	3	BS
5	U15CPR105BR	C Programming	3	0	0	3	ES
6	U15EGR106BR	Engineering Graphics for ECE ¹	2	2	0	3	ES
		Practical					
7	U15PCL107CR	Physics and Chemistry Laboratory $-I^2$	0	0	4	2	BS
8	U15CPL108BR	C Programming Laboratory	0	0	4	2	ES
9		Library	0	0	2	0	
10		Seminar	0	0	2	0	
	·		То	tal Cr	edits	24	
		Optional Language Elective	*				1
11	U150LE1101	French					
12	U150LE1102	German	0	0	2	1	HS
13	U150LE1103	Japanese	1				

*Students may opt for foreign languages *viz.*, German/French/Japanese with additional one credit (over and above the CGPA calculation).

¹ The examination will be conducted for 3 hours through written and practical modes.

²Laboratory classes on alternate weeks for Physics and Chemistry. The lab examination will beconducted separately for 50 marks each.

HOD-First Year Dr. M. Renuga	Chairperson BOS/ECE & HOD-ECE Dr. R.S. Sabeenian	Member Secretary, Academic Council Dr. R. Shivakumar	Chairperson, Academic Council & Principal Dr. S.R.R. Senthilkumar
---------------------------------	---	--	---

SONA COLLEGE OF TECHNOLOGY, SALEM – 636 005 (An Autonomous Institution)

Courses of Study for BE / B Tech Semester II under Regulations 2015R (CBCS)

Branch: ECE

S.No.	Course Code	Course Title	L	Т	Р	С	Group code			
		Theory		•						
1	U15ENG201AR	Technical English –II	2	0	2	3	HS			
2	U15MAT202CR	Mathematics – II for ECE	3	2	0	4	BS			
3	U15MEC203R	Basic Mechanical Engineering	3	0	0	3	ES			
4	U15CHE204BR	Environmental Engineering Science	3	0	0	3	BS			
5	U15BEE205R	Basic Electrical Engineering	3	0	0	3	ES			
Practical										
6	U15PCL206CR	Physics and Chemistry Laboratory – II [#]	0	0	4	2	BS			
7	U15EPL207R	Engineering Practices Laboratory	0	0	4	2	ES			
8	U15BEL208R	Basic Electrical Engineering Laboratory	0	0	4	2	ES			
9		Library	0	0	2	0				
10		Seminar	0	0	2	0				
			Т	otal Cr	edits	22				
Optional Language Elective*										
11	U150LE1201	French								
12	U150LE1202	German	0	0	2	1	HS			
13	U150LE1203	Japanese								

*Students may opt for foreign languages viz., German/French/Japanese with additional one credit (over and above the CGPA calculation).

[#] Laboratory classes on alternate weeks for Physics and Chemistry. The lab examination will be conducted separately for 50 marks each.

HOD -	Chairperson BOS/ECE	Member Secretary,	Chairperson, Academic
First Year	& HOD-ECE	Academic Council	Council & Principal
Dr. M. Renuga	Dr. R.S. Sabeenian	Dr. R. Shivakumar	Dr. S.R.R. Senthilkumar

Sona College of Technology, Salem

(An Autonomous Institution)

Courses of Study for B.E/B.Tech. Semester III under Regulations 2015R (CBCS)

Branch: Electronics and Communication Engineering

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit
		Theory				
1	U15MAT301CR	Transforms and Linear Algebra	3	2	0	4
2	U15EC301R	Electronic Devices	3	0	0	3
3	U15EC302R	Network Analysis and Synthesis	3	2	0	4
4	U15EC303R	Digital System Design	3	0	0	3
5	U15EC304R	Signals and Systems	3	2	0	4
		Practical			•	
6	U15EC305R	Electronic Devices Laboratory	0	0	2	1
7	U15EC306R	Digital Laboratory	0	0	2	1
8	U15ENG302R	English Laboratory	0	0	4	2
9	U15GE301R	Soft Skills and Aptitude - I	0	0	2	1
				To	tal Credits	23

Approved By

Chairman, Electronics and Communication Engineering BoS
Dr.R.S.SabeenianMember Secretary, Academic Council
Dr.R.ShivakumarChairperson, Academic Council & Principal
Dr.S.R.R.Senthil KumarConv to:Conv to:Dr.S.R.R.Senthil Kumar

Copy to:-

HOD/Electronics and Communication Engineering, Third Semester BE ECE Students and Staff, COE

Sona College of Technology, Salem

(An Autonomous Institution)

Courses of Study for B.E/B.Tech. Semester IV under Regulations 2015R (CBCS)

Branch: Electronics and Communication Engineering

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit
		Theory				
1	U15MAT401CR	Probability and Stochastic Processes	3	2	0	4
2	U15EC401R	Engineering Electromagnetics	3	2	0	4
3	U15EC402R	Electronic Circuits	3	0	0	3
4	U15EC403R	Linear Integrated Circuits	3	0	0	3
5	U15EC404R	Digital Signal Processing	3	2	0	4
6	U15EC405R	Analog Communication Systems	3	0	0	3
		Practical				
7	U15EC406R	Linear Integrated Circuits Laboratory	0	0	2	1
8	U15EC407R	Electronic Circuits and Simulation Laboratory	0	0	2	1
9	U15EC408R	Digital Signal Processing Laboratory	0	0	2	1
10	U15GE401R	Soft Skills and Aptitude - II	0	0	2	1
	1		I	Т	otal Credits	25

Approved By

Chairperson, Electronics and Communication Engineering BoSMember Secretary, Academic CouncilChairperson, Academic Council & PrincipalDr.R.S.SabeenianDr.R.ShivakumarDr.S.R.R.Senthil Kumar

Copy to:-

HOD/Electronics and Communication Engineering, Fourth Semester BE ECE Students and Staff, COE

Sona College of Technology, Salem

(An Autonomous Institution)

Courses of Study for B.E/B.Tech. Semester V under Regulations 2015R (CBCS)

Branch: Electronics and Communication Engineering

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit
	I	Theory		I		
1	U15EC501R	Digital Communication	3	0	0	3
2	U15EC502R	Transmission Lines and Waveguides	2	2	0	3
3	U15EC503R	Microprocessors and Microcontroller	3	0	0	3
4	U15CS507R	Data Structures and Object Oriented Programming in C++	2	0	2	3
5	U15EC504R	Control Systems	2	2	0	3
6	U15EC505R	VLSI Design	3	0	0	3
		Practical		I		
7	U15EC506R	Microprocessors and Microcontroller Laboratory	0	0	2	1
8	U15EC507R	VLSI Laboratory	0	0	2	1
9	U15EC508R	Communication Laboratory	0	0	2	1
10	U15GE501R	Soft Skills and Aptitude - III	0	0	2	1
	1	l		То	tal Credits	22

Approved By

Chairperson, Electronics and Communication Engineering BoSMember Secretary, Academic CouncilChairperson, Academic Council & PrincipalDr.R.S.SabeenianDr.R.ShivakumarDr.S.R.R.Senthil Kumar

Copy to:-

HOD/Electronics and Communication Engineering, Fifth Semester BE ECE Students and Staff, COE

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E/B.Tech. Semester VI under Regulations 2015R (CBCS) Branch: Electronics and Communication Engineering

S. No	Course Code		Course Title	Lecture	Tutorial	Practical	Credit
			Theory			I	1
1.	U15EC601R	Antenna and Wave	Propagation	3	0	0	3
2.	U15EC602R	Digital Image Proce	essing	3	0	0	3
3.	U15EC603R	Embedded Systems	mbedded Systems		0	0	3
4.	U15EC902R		Wireless Communication	3		0	
5.	U15EC916R	Professional	Measurement and Instrumentation		0		0*
6.	U15EC928R	Elective -	Sensors and IOT				3*
7.	U15EC926R		Machine Learning and Its Applications	2	0	2	
8.	noc21-cs16		Cryptography and Network Security	3			
9.	noc21-cs24	Professional	Introduction to Machine Learning		0	0	3*
10.	noc21-ee32	 Elective - NPTEL Course 	Sensors and Actuators			0	5**
11.	noc21-cs45		Data Analytics with Python				
12.	U15CS1003R		Internet of Things				
13.	U15CS1006R		Data Science	2	0	0	2
14.	U15IT1004R		Python Programming	3	0	0	3
15.	U15IT1003R	Open Elective	Problem Solving Techniques Using Java Programming				
16.	U15IT1005R		Introduction To Database Technology				
17.	U15CS1004R	1	Mobile Application Development				
18.	U15FT1001R	7	Fundamentals of Fashion Design				
19.	U15CE1004R		Municipal Solid Waste Management				

	Practical									
20.	U15EC604R	Digital Image Processing Laboratory	0	0	2	1				
21.	U15EC605R	Embedded Systems Laboratory	0	0	2	1				
22.	U15CS606R	Data Structures and Object Oriented Programming in C++ Laboratory	0	0	2	1				
23.	U15GE601BR	Soft Skills and Aptitude - IV	0	0	2	1				
					Total Credits	22				

*Any 1 elective to be opted by a student among 4 electives.

Approved By

Chairperson, Electronics and Communication Engineering BoSMember Secretary, Academic CouncilChairperson, Academic Council & PrincipalDr.R.S.SabeenianDr.R.ShivakumarDr.S.R.R.Senthil Kumar

Copy to:-

HOD/Electronics and Communication Engineering, Sixth Semester BE ECE Students and Staff, COE

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E/B.Tech. Semester VII 2015R (CBCS) Branch: Electronics and Communication Engineering

S. No	Course Code		Course Title	Lecture	Tutorial	Practical	Credit	Total
								Contact
								Hours
			Theory					
1	U15EC701R	Microwave Engine	eering	3	0	0	3	45
2	U15EC702R	Optical Fiber Com	ptical Fiber Communication			0	3	45
3	U15EC703R	Computer Network	ks	3	0	0	3	45
4	U15EC901R	Elective –	Satellite Communication	- 3	0	0	3*	45
5	U15EC915R	-	Computer Architecture	- 3	0	0	3.	43
	U15EC917R	-	Bio-Medical Instrumentation					
	U15EC924R	1	Professional Ethics and Human Values	3	0	0	3*	45
	U15EC927R		Deep Learning					

*Any 2 electives to be opted by a student among 5 professional electives.

Approved By

Chairperson, Electronics and Communication Engineering BoSMember Secretary, Academic CouncilChairperson, Academic Council & PrincipalDr.R.S.SabeenianDr.R.ShivakumarDr.S.R.R.Senthil Kumar

Copy to:-

HOD/Electronics and Communication Engineering, Seventh Semester BE ECE Students and Staff, COE

Page 1 of 2

	U15CE1003R		Energy Efficiency and Green Building					
	U15CS1004R		Mobile Application Development					
	U15EE1006R		Renewable Energy Systems					
	U15IT1003R	Open	Problem Solving Techniques Using		0	0	3	
6	015111005K		Java Programming	2				45
	U15MC1002R	Elective –	3D Printing Technology	3				15
	U15ME1002R		Renewable Energy Sources					
	U15ME1004R		Industrial Safety					
	U15ME1005R		Maintenance Engineering					
	U15ME1010R		3D Printing					
			Practical					
7	U15EC704R	Microwave and O	Optical Laboratory	0	0	2	1	30
8	U15EC705R	Mini Project	Aini Project			4	2	60
9	U15EC706R	Comprehensive I	omprehensive Review		0	2	1	30
	Total Credits 2							

Approved By

Chairperson, Electronics and Communication Engineering BoSMember Secretary, Academic CouncilChairperson, Academic Council & PrincipalDr.R.S.SabeenianDr.R.ShivakumarDr.S.R.R.Senthil Kumar

Copy to:-

HOD/Electronics and Communication Engineering, Seventh Semester BE ECE Students and Staff, COE

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E/B.Tech. Semester VIII 2015R (CBCS) Branch: Electronics and Communication Engineering

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit	Total Contact Hours			
	Practical									
1	U15EC801R	Project Work	0	0	24	12	360			
	Total Credits									

Approved By

Chairperson, Electronics and Communication Engineering BoSMember Secretary, Academic CouncilChairperson, Academic Council & PrincipalDr.R.S.SabeenianDr.R.ShivakumarDr.S.R.R.Senthil Kumar

Copy to:-

HOD/Electronics and Communication Engineering, Eighth Semester BE ECE Students and Staff, COE

Sona College of Technology, Salem – 636 005 (An Autonomous Institution) Courses of Study for BE / BTech Semester I under Regulations 2015R (CBCS)

Branch: ECE

S.No.	Course Code	Course Title L T P					Group code
		Theory					
1	U15ENG101AR	Technical English – I	Technical English – I 2 0 2 3				
2	U15MAT102CR	Mathematics – I for ECE	3	2	0	4	BS
3	U15PHY103BR	Physics for ECE	4	0	0	4	BS
4	U15CHE104BR	Applied Chemistry	Applied Chemistry 3 0 0				BS
5	U15CPR105BR	C Programming 3 0 0				3	ES
6	U15EGR106BR	Engineering Graphics for ECE^1 2 2 0				3	ES
	Practical						
7	U15PCL107CR	Physics and Chemistry Laboratory $-I^2$ 0042		2	BS		
8	U15CPL108BR	C Programming Laboratory 0 0 4 2				ES	
9		Library	0	0	2	0	
10		Seminar	0	0	2	0	
	Total Credits						
	Optional Language Elective*						
11	U150LE1101	French					
12	U150LE1102	German	0	0 0 2		1	HS
13	U150LE1103	Japanese					

*Students may opt for foreign languages *viz.*, German/French/Japanese with additional one credit (over and above the CGPA calculation).

¹ The examination will be conducted for 3 hours through written and practical modes.

²Laboratory classes on alternate weeks for Physics and Chemistry. The lab examination will beconducted separately for 50 marks each.

HOD-First Year Dr. M. Renuga	Chairperson BOS/ECE & HOD-ECE Dr. R.S. Sabeenian	Member Secretary, Academic Council Dr. R. Shivakumar	Chairperson, Academic Council & Principal Dr. S.R.R. Senthilkumar
---------------------------------	---	--	---

U15ENG	101AR	TEC	HNICAL	ENGLIS	ΗI	L 2	Т 0	P 2	C 3	Marks 100
	Course Outcomes At the end of the course, the students will be able to,									
1. frame	1. frame sentences correctly, both in written and spoken forms of language with accuracy and fluency.									
2. develop	and dem	onstrate list	ening skill	ls for acad	lemic and	pro	fessi	onal	pur	poses.
3. draw co	onclusions	s on explicit	and impli	cit oral in	formation	ı.				
-		e reading s lding vocat		reinforce	language	ski	lls r	equi	red	for using
5. read for respons	-	ig and unde	rstanding	informati	on, follov	ving	dire	ctio	ns ai	nd giving
UNIT I	 Ger Pre Act Adj Pre Col Ter 	S ON LAN heral Vocat fixes and S ive and Pas vectives, Co positions an locations uses dal Verbs a	oulary uffixes ssive Voic omparative nd Depend	e Adjectiv lent Prep						
 UNIT II LISTENING -I Listening to conversations, welcome speeches, lectures and description of equipment. Listening to different kinds of interviews (face-to-face, radio, TV and telephone interviews). Understanding short conversations or monologues. Taking down phone messages, orders, notes etc. 										
UNIT III	Listening for gist, identifying topic, context or function.									
	 Listening comprehension, entering information in tabular form. Intensive listening exercises and completing the steps of a process. Listening exercises to categorise data in tables. 									

	• Listening to extended speech for detail and inference.						
	Zistening to entended specen for detail and interenter.						
UNIT IV	 READING -I Understanding notices, messages, timetables, advertisements, graphs, etc. 						
	 Reading passages for specific information transfer. Reading documents for business and general contexts and interpreting graphical representations. Error correction, editing mistakes in grammar, vocabulary, spelling, etc. Oral reading - poetry and prose excerpts, general and taskning entities and encodetes. 						
UNIT V	technical articles, and anecdotes. READING -II						
	 Reading passage with multiple choice questions, reading for gist and reading for specific information, skimming for comprehending the general idea, meaning and contents of the whole text. Short reading passage: gap-filling exercise related to grammar, testing the understanding of prepositions, articles, auxiliary verbs, modal verbs, pronouns, relative pronouns and adverbs. Short reading passage with multiple choice questions, gap-filling exercise testing the knowledge of vocabulary, collocations, dependent prepositions, grammatical structures. Short reading passages for sentence matching exercises, picking out specific information in a short text. 						
	Total: 45 Hours						
0	test will be conducted for 20 marks internally and evaluated along v	with					
	Technical English – I in the End Semester Valuation.						
Reading te examiners	est will be conducted for 20 marks internally and evaluated by inter	nal					

ТЕ	XT BOOK					
1.	Norman Whitby, Business Benchmark – Pre-Intermediate to Intermediate, Students Book, Cambridge University Press, 2006.					
EX	TENSIVE READING					
1.	The Story of Amazon.com- Sara Gilbert, published by Jaico					
2.	The Story of Google – Sara Gilbert, published by Jaico					
RE	FERENCE BOOKS					
1.	Technical English – I & II, Dr. M. Renuga, et al. Sonaversity, Sona College of Technology, Salem, Revised edition, 2016.					
2.	A Course in Communication Skills, P. Kiranmai Dutt, Geetha Rajeevan, C. L. N. Prakash, published by Cambridge University Press India Pvt. Ltd.					

MATHEMATICS – I FOR ECE

Course Outcomes

At the end of the course, the students will be able to,

- 1. determine eigen values and eigen vectors and reduce matrices from quadratic form to canonical form.
- 2. interpret curvature and find the radius of curvature, centre of curvature, evolutes, involutes and envelope of curves.
- 3. explain functions of several variables and find the Taylor's series expansion, Jacobians, maximum and minimum values of functions of several variables.
- 4. find the area of plane of region, length of the plane curve, area of surface of a solid and volume of solid of revolution.
- 5. describe the double and triple integrals, discuss the change of order of integration and find the area and volume by multiple integrals.

UNIT I	MATRICES Eigen values and Eigen vectors – properties of Eigen values and Eigen vectors – Cayley – Hamilton theorem – real matrices – symmetric – skew – symmetric – orthogonal quadratic form – canonical form or sum of the squares form –reduction of quadratic form to canonical form.	9+6
UNIT II	DIFFERENTIAL CALCULUS Curvature, centre and radius of curvature – circle of curvature – evolute – envelopes, evolute as the envelope of normals.	9+6
UNIT III	FUNCTIONS OF SEVERAL VARIABLES - MAXIMA AND MINIMA Functions of several variables – partial differentiation – total derivative – Jacobians – Taylor's theorem for function of two variables – maxima and minima of functions of two variables with and without constraints – Lagrange's method of undetermined multipliers.	9+6

UN	IT IV	INTEGRAL CALCULUS Reduction formulae – area of plane region – quadrature – length of plane curve – rectification – volume of solid of revolution (cylindrical disc method only) – area of the surface of a solid of revolution.	9+6				
UNIT V		MULTIPLE INTEGRALS Double integral – change of order of integration – change of variables between Cartesian and polar coordinates – triple integral – volume as triple integrals in Cartesian, cylindrical and spherical polar coordinates.	9+6				
		Total: 75 H	lours				
TE	хт вос	DKS					
1.	1. B. V. Ramana, "Higher Engineering Mathematics", Tata McGraw Hill Co. Ltd., New Delhi, 30 th Reprint, 2017.						
2.	2. T. Veerarajan, "Engineering Mathematics for semesters I and II", 3 rd Edition, Tata McGraw Hill Education Pvt. Ltd, New Delhi, 2012.						
RE	FEREN	CE BOOKS					
1.	1. G. James, Advanced Modern Engineering Mathematics, 3 rd Edition, Pearson Education 2007.						
2.	B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 43 rd Edition, 2014.						
3.		reyszig, "Advanced Engineering Mathematics", International Ston, Wiley, 10 th Edition, 2015.	udent				

U15PHY1		PHYS	SICS F	FOR E	CE		L 4	Т 0	Р 0	С 4	Marks 100	
	Course Outcomes At the end of the course, the students will be able to,											
1. explain	n the the	eory of cr	ystals, s	structu	re of c	rystals	and de	fects	s in c	cryst	als.	
2. discus applica		and their	applica	ations	and ex	plain tl	ne theo	ory o	f opt	toele	ctro	nics with
3. explain	n the co	ncepts of	electro	dynam	nics as	applica	ble to	engi	neer	s.		
4. provid mecha		erview of	quantu	ım me	chanic	s and t	oasic w	vave	equa	ation	s in	quantum
5. analyz	e types	of micros	copes a	and dis	cuss tl	ne theor	ry of n	anop	hysi	cs.		
UNIT I	UNIT I CRYSTAL STRUCTURE Crystalline and Amorphous Solids – Crystal Structure - Unit and Primitive Cells – Lattice Parameters and Types of Lattices – Introduction to Miller Indices and Crystal Plane – Inter-planar distance – Cubic Systems-SC-BCC-FCC-HCP– Crystal diffraction methods-Laue's method-Rotating crystal method and powder crystal method(qualitative)– Crystal Defects-point defect-line defect and surface defect.							 Ir n Ir				
UNIT II LASERS AND OPTOELECTRONICS Preliminary Idea about Transition – Lasers and their Principle – Properties of Lasers – Types of Lasers –Nd:YAG laser-CO2 laser- Semiconductor laser– Applications of Lasers – Holography – Introduction to Fiber Optics – Optical Fibers – Acceptance Angle and Cone – Types of Optical Fibers (based on material, mode refractive index) – Power Loss in Optical Fibers – Endoscope.					- - e							

UNIT III	ELECTRODYNAMICS Coulomb's law - Gauss's law – dielectric polarization, polarizability and susceptibility- Types of polarization – internal field and Claussius - Mosotti equation -Lorentz force - steady current and equation of continuity - Biot- Savart law(qualitative) - Ampere's law (qualitative) – Faraday's law of induction – generalization of Ampere's law – Maxwell's equation – propagation of EM waves in free space.	12
UNIT IV	QUANTUM MECHANICS Blackbody Radiation – Quantum of Energy and Planck's Hypothesis – Rayleigh-Jeans Law-Photo electric effect – Compton Effect (qualitative) – X-Rays – Moseley's Law –de-Broglie Hypothesis — Davisson and Germer Experiment– Velocity of de- Broglie Wave and Need of Wave Packet – Wave and Group Velocity (qualitative) - Uncertainty Principle- Applications of Heisenberg Principle -No electron within the nucleus– Strength of nuclear force– Time-Dependent Schrödinger Equation – Time- Independent Schrödinger Equation.	12
UNIT V	CHARACTERIZATION TECHNIQUES AND NANOPHYSICS Introduction to TEM – Instrument-illumination-lens-imaging– Scanning Electron Microscope – Specimen Preparation –Atomic Force Microscope –Nanophysics – Properties of Nano Particles – Surface Area / Volume Ratio – Quantum Confinement – Electron Confinement – Nano Materials and Their Synthesis- Ball milling method-Chemical vapour deposition method (CVD)– Buck Balls and Fullerenes – Carbon Nanotubes-structure properties and applications.	12
	Total: 60	Hours

TEXT BO	TEXT BOOKS						
1.	Gurbinder Kaur and Gary R Pickrell, "Modern Physics", McGraw Hill Education, New Delhi, 2014.						
2.	David J. Griffiths, "Introduction to Electrodynamics", Pearson, Edition: 4, Delhi, 2015.						
REFEREN	NCE BOOKS						
1.	Arthur Beiser, Shobhit Mahajan and S Rai Choudhary, "Concepts of Modern Physics', 7e, McGraw Hill Education 2015.						
2.	David Halliday, Robert Resnick and Kenneth S. Krane, "Physics" Vol I, 5e, John Wiley and Sons, 2003.						
3.	David Halliday, Robert Resnick and Kenneth S. Krane, "Physics" Vol II, 5e, John Wiley and Sons, 2005.						
4.	M. N. Avadhanulu, "Engineering Physics" Vol I, S Chand & Company Ltd, 2010.						

APPLIED CHEMISTRY

(Common to ECE, CSE & IT branches)

L T P C Marks 3 0 0 3 100

Course Outcomes At the end of the course, the students will be able to,									
1.	analyze the types of polymers, polymerization reactions, polymerization techniques and fabrication methods of polymers for engineering applications.								
2.	discuss	s the basic principles of electrochemistry and its applications.							
3.	analyze prevent	e the types of corrosion and the various control methods for corrosition.	ion						
4.	4. describe the construction, working principle and applications of energy storage devices for electronic appliances.								
5. outline the principles, advantages and applications of organic electronic materials used in electronic devices.									
UNI	ΤI	POLYMERS AND COMPOSITES Nomenclature of Polymers – Functionality – Types of Polymerization – Addition – Condensation and Copolymerization – Classification of Polymers – Free Radical mechanism of Addition Polymerization – Properties of Polymers- glass transition temperature – tacticity – Methods of Polymerization-Bulk-Solution-Emulsion and Suspension – Plastics – Moulding Constituents of Plastic – Moulding of Plastics into Articles-Injection-Compression and Blow Moulding – Thermoplastic and Thermosetting Resins – Engineering Plastics – Nylon 6,6-Polycarbonate and Polyurethane- Preparation-Properties and Applications – Rubbers – Types – Applications – Vulcanization of Rubber – Composites- Constituents of Composites – Types of FRP Composites.	9						

UNIT II	ELECTROCHEMISTRY Conductivity of Electrolytes – Kohlrausch's Law of Independent Migration of Ions and Its Applications – Conductometric Titration (Acid-Base – HCl vs NaOH) – Electrode Potential – Nernst Equation – Derivation and Problems Based on Single Electrode Potential Calculation – Electrochemical Series – Significance – Reference Electrodes - Standard Hydrogen Electrode, Saturated Calomel electrode – Ion selective electrode – glass electrode – determination of pH for unknown solution – Electrochemical Cell – Emf of an Electrochemical Cell – Redox Reactions - Potentiometric Titrations (Redox – Fe ²⁺ Vs Dichromate).	9
UNIT III	CORROSION AND CORROSION CONTROL Dry or Chemical Corrosion – Pilling-Bedworth Rule – Wet or Electrochemical Corrosion – Mechanism of Electrochemical Corrosion – Galvanic Corrosion – Concentration Cell Corrosion – Waterline Corrosion – Pitting Corrosion – Intergranular Corrosion – Stress Corrosion – Passivity – Factors Influencing Corrosion – Corrosion Control – Cathodic Protection-Sacrificial Anodic Protection Method and Impressed Current Cathodic Protection – Protective Coatings – Metallic Coatings – Methods of Cleaning Articles Before Electrodeposition-Electroplating and Electro Less Plating of Nickel – Organic Coatings – Paints- Constituents and Functions.	9
UNIT IV	MODERN ENERGY DEVICES FOR ELECTRONIC APPLIANCES Reversible and Irreversible Cells – Batteries-Types of Batteries – Battery Characteristics – Voltage-Current – Capacity – Electricity Storage Density – Power – Discharge Rate – Cycle Life-Energy Efficiency and Shelf Life – Fabrication and Working of Alkaline Battery – Lead-Acid Battery – Ni – Cd – Lithium Ion Batteries and Solar Cells – Fuel Cells – Hydrogen- Oxygen fuel cell – Nano Batteries- Construction-Working- Advantages and Applications.	9

UNIT V CHEMISTRY OF ORGANIC ELECTRONIC MATERIALS

Organic Semiconducting Materials – Working Principle and Advantages Over Inorganic Semiconducting Materials – P-Type and N-Type Organic Semiconducting Materials – Pentacene Fullerenes – C-60 – Organic Dielectric Material-Definition-Working Principle and Examples – Polystyrene – PMMA – Organic Light Emitting Polymer – Structure-Properties and Applications of Polythiopene– Organic Light Emitting Diodes (Oleds) – Construction – Working Principle and Applications – Organic Solar Cells-Working Principle and Applications Organic Transistors – Construction-Working Principle and Applications in Electronic Industries.

Total: 45 Hours

9

TEXT BOOK

	P. C. Jain and Monica Jain, "Engineering Chemistry" Dhanpat Rai Publishing
1.	Company (P), New Delhi, 15e, 2006.

REFERENCE BOOKS

1.	M. Raja <i>et al.</i> , "Applied Chemistry", Sonaversity, Sona College of Technology, Salem, Revised edition 2018.							
2.	Joint Contributors, "Engineering Chemistry" John Wiley and Sons, 2e, 2014							
3.	H.K. Chopra, A. Parmer, "Chemistry for Engineers", Narosa Publishing House, New Delhi, 110 002, 2016.							
4.	Hagen Klauk, "Organic Electronics: Materials, Manufacturing and Applications", Wiley-VCH, 2006.							

U15CPR105BR				С	C PR	ROC	GR/	AN	ИМ	IIN	G			L	Т	Р	С]	Marks
			(R	Revi	sed	Syl	llab	bus	s E(CE-	-201	8)		3	0	0	3		100
Course Ou	tcome	s																	
At the end	of the	cou	rse,	the	stu	den	its v	wil	ll b	e al	ble t	to,							
1. write sin	nple C	pro	gram	is us	sing	g the	e ba	asic	e lai	ngu	age	con	stru	cts					
2. write C p	orogran	ns u	sing	con	trol	sta	tem	nen	nts										
3. impleme	nt the a	array	/ con	ncep	ots ai	ind s	strir	ng	cor	ncej	pts i	n C	usir	ıg fu	nctio	ons			
4. impleme	nt poin	nters	, stru	ıctuı	res a	and	l uni	ion	ns in	n C	lang	guag	ge						
5. write pro	grams	to ii	mple	mer	nt fil	le o	oper	rati	ons	s in	C la	angu	age						
UNIT I	UNIT I INTRODUCTION TO PROGRAMMING AND C 9 LANGUAGE BASICS Introduction to algorithms- Pseudo code- Flow chart- Algorithms C C Character Set– Identifiers and Keywords – Data types – Constants – Variables and Arrays – Declarations – Expressions – Statements and Symbolic Constants – Operators – Arithmetic Operators-Unary Operators-Relational and Logical Operators-Assignment Operators-Conditional Operator – Bitwise operators. Managing Data Input and Output Operations Output Operations							s y 											
UNIT II CONTROL STATEMENTS Storage Classes-Automatic Variables –External (Global) Variables- Static Variables - Multifile Programs - Branching and Looping Statements – Nested Control Structures – switch Statement – break Statement – continue Statement – comma Operator – goto Statement							g k												
UNIT III ARRAYS AND FUNCTIONS Defining an Array – Processing an Array – Two-dimensional Arrays – Arrays and Strings -Defining a Function – Accessing a Function – Function Prototypes – Passing Arguments to a Function – Recursion							a												

UNI	UNIT IV POINTERS, STRUCTURES AND UNIONS Pointer Declarations – Operations on Pointers – Passing Pointers to a Function – Pointers and One-dimensional Arrays – Arrays of Pointers – Defining a Structure – Processing a Structure – User- defined Data Types – Structure and Pointers – Passing Structures to Functions – Unions							
UNIT V FILES Data Files – Opening and Closing a Data File – Reading a Writing a Data File – Processing a Data File – Sequential a Random file accessing								
		Total: 45 H	ours					
TEX	т во	OKS						
1.	Yash	avant P. Kanetkar. "Let Us C", BPB Publications, 14th edition, 2016.						
2.		alagurusamy, "Programming in ANSI C", seventh edition, Tata McGraw 2016	V					
REF	EREN	NCE BOOKS						
1.	Kernighan,B.W and Ritchie,D.M, "The C Programming language", Second Edition, Pearson Education, 2006.							
2.	2. Byron S Gottfried, "Programming with C", Schaum's Outlines, Second Edition, Tata McGraw-Hill, 2006.							
3.	Anita Goel and Ajay Mittal, "Computer Fundamentals and Programming in C", Dorling Kindersley (India) Pvt. Ltd., Pearson Education in South Asia, 2011.							
4.	Deite	el and Deitel, "C How to Program", Pearson Education, New Delhi, 201	1.					

U15EGR10	6BR	ENGIN	NEERI	NG G ECI		PHIC	CS FO	R	L 2	T 2	Р 0	C 3		arks 00
	Course Outcomes At the end of the course, the students will be able to,													
1. predict comport		onstructio	on of v	variou	is cu	urves	in civ	il el	evati	ion p	olan	and	ma	achine
		ojection explain s												achine
		rinciples and plane		jection	n of v	vario	us plan	nes b	y dif	ferer	nt an	gle	to p	oroject
		nciples o ne by cha						d by	the	axis	s ind	cline	ed t	o one
	5. plan the interior components of machinery or buildings by sectioning the solid and to study the development of simple solids for fabrication of sheet metals.								id and					
UNIT I		DAMEN RVES	TALS	OF G	GRA	APHIO	CS AN	D E	NGI	NEF	ERI	NG		12
	Draft – I Dime Modi	ortance of ting Instru Layout a ensioning ifying – T	ument - nd Fol – In Fransfo	– BIS lding nportai rming	Con of ince g and	nventi Draw of 2 d Dime	ons an ving S 2D Dr ension	d Sp heet raftir ing	becifi s – ng –	Lett - Sk	ons ering etch	– Si g ai ing	ze nd -	
	Engineering Curves: Introduction – Conic Section – Ellipse – Parabola – Hyperbola – Tangent and Normal to Conics – Cycloidal Curves – Involutes.													
UNIT II	ISO	METRIC	с то о	RTH	[OG]	RAPI	HIC V	IEV	VS					12
Representation of three dimensional objects, General Principles of Orthographic projection, Need for importance of multiple views and their placement, First angle projection, layout of views, Developing visualization skills through free hand sketching of multiple views from pictorial views of objects.														

UNIT III	PROJECTION OF POINTS, LINES AND PLANE SURFACES	12							
	Projections of Points: Introduction – Position of a Point – Notation of a Point – Projection of a Point – SV of the Point								
	Projection of Lines: Introduction – Position of a Straight Lines – Terms used in Projection of Lines – Lines Parallel to Both the RPs – Line Perpendicular to Either of the RPs – Line inclined to One RP and Parallel to Other – Line Inclined to both the RPs – Line Parallel to the PP								
	Projection of Planes: Introduction – Position of Planes – Terms used in Projection of Planes – Plane to an RP – Plane Inclined to One RP and Perpendicular to the Other RP – Plane Perpendicular to Both the RPs – Use of Auxiliary Plane Projection Method								
UNIT IV	PROJECTION OF SOLIDS								
	Projection of Solids: Introduction - Basic Solids – Frustums and Truncated Solids – Position of Solids – Solid with Axis perpendicular to an RP – Solid with Axis inclined to One RP and Parallel to the Other – Solid with Axis Parallel to the PP – Solid with Axis Parallel to Both the RPs – Rules for Deciding the Hidden Lines – Projection of Sphere								
UNIT V	SECTION OF SOLIDS AND DEVELOPMENT OF SURFACES	12							
	Section of Solids: Introduction – Theory of Sectioning – Section of Prisms and Cube – Section of Pyramids – Section of Cylinder – Section of Cones – Section of Spheres.								
Theory of Development: Introduction – Methods of Development – Parallel Line Development – Radial Line Development.									
	Total: 60	Hours							

TEX	TEXT BOOKS						
1	Dr. P. Suresh et al., " <i>Engineering Graphics and Drawing</i> ", Revised edition 2012, Sonaversity, Sona College of Technology, Salem.						
2.	Dhananjay A. JoIhe, " <i>Engineering Drawing with an introduction to AutoCAD</i> ", Tata McGraw Hill Publishing Company Limited, 2008						
REI	REFERENCE BOOKS						
1.	Basant Agarwal and Agarwal C.M., "Engineering Drawing", Tata McGraw Hill Publishing Company Limited, New Delhi, 2008						
2.	K. R. Gopalakrishnana, "Engineering Drawing (Vol. I & II)", Subhas Publications, 1998						
3.	K.V.Nataraajan "A Text Book of Engineering Drawing" Dhanalakshmi Publishers, Chennai, 2006.						

U15	5PCL107CR	PHYSICS AND CHEMISTRY	L	Т	Р	С	Marks
		LABORATORY - I	0	0	4	2	100
Cou	irse Outcomes						
At t	the end of the o	course, the student will be able to,					
1.		nciples of optics, thermal Physics	and elas	ticity	to	dete	ermine the
		roperties of materials.					
2.	•	given water sample to determine					
		uality of water suitable for domes	tic purp	ose a	and	dete	rmine the
-		ght of a polymer.			c	1	
3.		e thickness of the given coppe					
		ind evaluate the amount of alkaling	• •			-	
Lict		<pre>ise hold water sample and suggest t ts (PHYSICS PART)</pre>	le remec	nai n	ieasi	ires	for them.
1.	-	of the thickness of a thin wire b	v formi	no in	terf	ren	ce fringes
1.			y ionii	ng n		JICH	ee minges
2.	using air wedge apparatus. Determination of the wavelength and velocity of ultrasonic waves and the						
	compressibility of a given liquid using the ultrasonic interferometer.						
3.		n of thermal conductivity of a ba					Lee's disc
	apparatus.					-	
4.	Determination	n of the angle and dispersive por	ver of a	a giv	en p	orisr	n using a
	spectrometer.						
5.	Determination	n of laser wavelength, particle	size (lycoj	odi	um	powder),
	-	gle and numerical aperture of an op			-		
6.		n of the Young's modulus of a g	iven ma	ateria	l by	no	n-uniform
	bending meth						
List	_	ts (CHEMISTRY PART)					
1.	Estimation of	hardness of Water by EDTA method	d.				
2.	Determination of molecular weight of a polymer by viscosity measurements.						
3.	Estimation of hydrochloric acid by pH metry.						
4.	Conductometric titration of strong acid vs strong base (HCl vs NaOH).						
5.	Estimation of	ferrous iron by potentiometry					
6.	Estimation of	corrosion by weight loss method.					
I					To	tal:	60 Hours

		C BBOCBA	MATE	CIAD		L	т	D	C	Manka
U15	CPL108BR	C PROGRA (Revised Sylla		-			Т 0	Р 4	C 2	Marks 100
Com	rse Outcome		abus Ex	2010	"	0	U	-	-	100
		, eriments, the student	ts will b	e able t	0,					
1. v	vrite, compile	and debug programs i	in C lan	guage						
	-	blems and implement a								
	-	oose programming o	-		at efficie	ently	so	lve	co	mputing
	problems in re									
	of Experime									-
1.	-	gram to read number					cho	oice	anc	l output
2.		verage and percentage					41.0.1	:-		hay the
2.	write a prog user.	gram to perform the ca	ucutatio	ns base	i on the	cond	itioi	i giv	ven	by the
		e calculate the salary	stateme	nt for an	employ	ee ha	sed	on	the	
	For example, calculate the salary statement for an employee based on the following conditions.									
	Г									
		Basic pay	DA	HRA	Specia			Loa	п	
		< 10000	25%	15%	5%	%	-	500		
		>=10000<=50000	35%	20%	10)%		100	0	
		>50000	50%	30%	20	0%		150	0	
3.	Write a pros	gram to generate any s	eries of	given n	umbers.	base	d or	n use	er's	choice.
		e, Fibonacci series, Ar		•						
4.	Write a prog	gram to perform opera	tions or	single	dimensio	onal r	natr	ix. I	For	
	example, so	rting, searching, and e	xtractin	g uniqu	e numbe	rs. O	utpu	it a	bee	p sound
	if a number satisfies a given condition, such as divisible by another number,									
	middle digit of a 3-digit number is a given digit.									
5.	Write a program to perform operations on multi dimensional matrix. For									
	example, Addition of matrices, Transpose of a matrix, Product of two matrices									
6.	Write a prog	gram to perform opera	tions or	strings	. For exa	mple	e, pa	lind	lron	ne
	checking, so	orting names, counting	, occurr	ence of a	a given c	harad	cter.			
7.	Write a prog	gram to generate any p	attern u	sing the	concept	t of fu	unct	ion.		
		5 51		C	I					

	For example,							
	*	342.560	1					
	**		2 2					
	#	987.004	4 3 4					
	\$&		4 4 4 4					
	^	/_* \	5 4 5 4 5					
	@*							
	*							
8.	Write a program using the concept of call by reference and recursion. For example, swapping two numbers, finding factorial etc.							
9.	Write a program to perform different types of arithmetic operations using pointers							
10.	the content.	• •	t of structure and union to get and display the book, name of the author, no of pages,					
11.	Write a program to get name, register number, marks of five subjects of a class of 60 students. Calculate total and average. Display the mark sheet of students using array of structures.							
12.	Write a loop that will examine each character in a character type array called <i>text</i> . Write out the ASCII equivalent of each character. Write loop in three different ways – <i>while, do while</i> and <i>for</i>							
13.	Implement the file operations using C programs.							
			Total: 60 Hours					

SONA COLLEGE OF TECHNOLOGY, SALEM – 636 005 (An Autonomous Institution)

Courses of Study for BE / B Tech Semester II under Regulations 2015R (CBCS)

Branch: ECE

S.No.	Course Code	Course Title	L	Т	Р	С	Group code		
Theory									
1	U15ENG201AR	Technical English –II	2	0	2	3	HS		
2	U15MAT202CR	Mathematics – II for ECE	3	2	0	4	BS		
3	U15MEC203R	Basic Mechanical Engineering	3	0	0	3	ES		
4	U15CHE204BR	Environmental Engineering Science	3	0	0	3	BS		
5	5 U15BEE205R Basic Electrical Engineering		3	0	0	3	ES		
		Practical							
6	U15PCL206CR	Physics and Chemistry Laboratory – II [#]	0	0	4	2	BS		
7	U15EPL207R	Engineering Practices Laboratory	0	0	4	2	ES		
8	U15BEL208R	Basic Electrical Engineering Laboratory	0	0	4	2	ES		
9		Library	0	0	2	0			
10		Seminar	0	0	2	0			
			Т	otal Cr	edits	22			
	Optional Language Elective*								
11	U150LE1201	French							
12	U150LE1202	German	0	0	2	1	HS		
13	U150LE1203	Japanese							

*Students may opt for foreign languages viz., German/French/Japanese with additional one credit (over and above the CGPA calculation).

[#] Laboratory classes on alternate weeks for Physics and Chemistry. The lab examination will be conducted separately for 50 marks each.

HOD -	Chairperson BOS/ECE	Member Secretary,	Chairperson, Academic
First Year	& HOD-ECE	Academic Council	Council & Principal
Dr. M. Renuga	Dr. R.S. Sabeenian	Dr. R. Shivakumar	Dr. S.R.R. Senthilkumar

U15ENG20	01AR	ТЕ	CHN	ICA	LE	NG	LIS	H –	п		L 2	Т 0	P 2	C 3	M 100
COURSE OUTCOMES At the end of the course, the students will be able to,															
U	1. use grammatical components effectively in both written and spoken communication														
-	2. develop speaking skills for self-introduction, delivering speeches and technical presentation.														
3. speak eff	ectively	in re	al tim	e and	bus	sines	ss sit	uatic	ons						
4. write ema	ails, fori	mal le	etters a	and de	escri	riptio	ons o	of gr	aphi	cs					
5. develop s	skills for	r writi	ing rej	ports	and	pro	posa	ls							
UNIT I	FOC					-									
	Cause Prono									cor	nditi	onal	s- A	rticl	es-
UNIT II	SPEA	KIN	G - I												
	Self-introduction- personal information-name-home background- study details- area of interest- hobbies- strengths and weaknesses- projects and paper presentations- likes and dislikes in food- travel- clothes- special features of home town. Welcome address- vote of thanks- special address on specific topics.							es- el-							
UNIT III	SPEAKING – II														
	Mini p arrang trainin assista presen	gemen ng r ance- ntatior	nts- f recruit appl n	aciliti ment- lying	ies- - a fo	of adve or a	fice ertisi a jo	fun ng- ob-	apj tear	ns- plyi n	sal ng wor	es- for k-	puro fin discu	chas nanc ussio	es- vial on-
	Situati studen organi candic indust new e manag with c	nt- cu iser- date- trialist emploger- so	ustom team interv t and yee an chedul	er an leade viewe candi nd ma le for	nd er ar er a idate anag trair	sale and and e- re ger- ining	es r team appl ecept emp g- asl	mana n me lican tionis ploye king	nger- embe it- c st an ee ar for c	ho er- ar nd a nd e direo	otel banl driv ppo mpl ction	ma k ma ver a intma loyee ns- se	nage anag and ent e- P. eekin	er a er a clie seek A. a ng h	und nt- er- und elp

	buying a product- selling a product- designing a website- cancelling and fixing appointments- hotel accommodation- training facilities- dress code- conference facilities.	
UNIT IV	WRITING – I Email, fixing an appointment- Cancelling appointments- conference details- hotel accommodation- order for equipment- training programme details- paper submission for seminars and conferences Letter Writing- Business communication- quotations- placing orders- complaints- replies to queries from business customers- inviting dignitaries- accepting and declining invitations	
	Resume / CV Transcoding: Flow Chart- Pie Chart- Graph- Bar Chart- Tabular Column.	
UNIT V	WRITING -II Technical report writing- feasibility reports-accident reports- survey reports- General purpose writing specifications of equipment - description of an object- National and International issues- answering general questions with special emphasis on seeking opinions	
	Technical Writing: recommendations- checklists- instructions- note making and memo Proposal: establishing a lab- introducing a subject in the curriculum- training programme for students	
	Total: 45 Hours st will be conducted for 20 marks externally and evaluated alon cal English –II in the End Semester Valuation.	
TEXT BOO	PK	

1.Norman Whitby, Business Benchmark – Pre-Intermediate to Intermediate,
Students Book, Cambridge University Press, 2006.

EXT	TENSIVE READING
1.	Who Moved my Cheese? – Spencer Johnson-G. P. Putnam's Sons
2.	"Discover the Diamond in You" – Arindam Chaudhuri – Vikas Publishing House Pvt. Ltd.
REI	FERENCE BOOKS
1.	A Course in Communication Skills, P. Kiranmai Dutt, Geetha Rajeevan, C. L. N. Prakash, published by Cambridge University Press India Pvt. Ltd.
2.	Technical English – I & II, Dr. M. Renuga, et al. Sonaversity, Sona College of

^{2.} Technology, Salem, Revised edition, 2016.

		MATHEMATICS – II	L	Т	Р	С	Μ
U15MAT20	2CR	FOR ECE	3	2	0	4	100
Course Out	comes						
At the end o	of the c	ourse, the students will be able to,					
1. solve dif	ferent t	ypes of ordinary differential equations us	ing va	ariou	s me	thoc	ls
-		functions, operators and use different me integrals.	thods	of so	olvin	g liı	ne,
	-	features of function of a complex varial volving conformal mapping.	ole, pi	oper	ties	and	solve
	-	series expansion of a complex functior omplex integral.	and	the j	proc	edur	res of
		on Laplace transform and its inverse, pro ntial equation using Laplace transform.	pertie	s and	sol	ve a	n
UNIT I	LINE	CAR DIFFERENTIAL EQUATIONS					9+6
	Linear coeffic homog equati reduci variati	d order differential equation with constaut r differential equation of second order cients - homogeneous - higher geneous differential equations - no ons - differential equation with variable able to equation with constant coefficient ion of parameters - higher order linear able coefficients.	with orde on-hou e coe its - r	r var er 1 noge fficie netho	iable inea nou nts od o	e r s - f	
UNIT II	Vector scalar vector argum Vector statem theore	TOR CALCULUS r differentiation - directional derivative function and conservative field - dive r integration - integration of a vector func- nent. r integration - line, surface and vol- nent of Green's, Stoke's and Gau ems, simple applications involving squa and rectangular parallelepiped.	rgence etion of ume ss d	e - c of a s integ iverg	url cala grals gence	- r ,	9+6
UNIT III	COM	PLEX FUNCTION THEORY					9+6
	Cauch	lex function - continuity - differentiabilit y- Riemann (C-R) equations: in Cartesia nic and conjugate harmonic functio	in coc	ordina	ates	-	

	Riemann equations: in polar coordinates - elementary functions - conformal mapping: mapping (or transforming or operator) - conformal mapping - conformal mapping by elementary functions - transformation: $w = z^n$ - Mapping: $w = z^2$, bilinear transformation.UNITEDCOMPLEX EXECTED ATEON							
UN	IT IV	COMPLEX INTEGRATION	9+6					
	Line integral in complex plane - Cauchy's integral theorem - Cauchy's integral formula - derivative of analytic functions(statement only) - complex sequences - series and power series - Taylor's series, Laurent series (statement only) - zeros and poles - theory of residues - residue - residue theorem - evaluation of real definite integrals as contour integral (unit circle only).							
UN	IT V	LAPLACE TRANSFORM	9+6					
		Laplace transform - application-advantage and sufficient conditions for existence of Laplace transform - general properties of Laplace transform - Laplace transform of periodic function - inverse Laplace transform - general properties of inverse Laplace transform - use of partial fractions to find Laplace transform - convolution - application of Laplace transform to differential equation with constant coefficient.						
		Total: 75	Hours					
TE	XT BOO	DKS						
1.	Tata Mo	rarajan, "Engineering Mathematics for semesters I and II", 3 rd I CGraw Hill Education Pvt. Ltd, New Delhi, 2012.						
2.								
RE	FEREN	CE BOOKS						
1.	1. G. James, Advanced Modern Engineering Mathematics, 3 rd Edition, Pearson Education 2007.							
2.	. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 43 rd Edition, 2014.							
3.		yszig, "Advanced Engineering Mathematics", International 9 , Wiley, 10 th Edition, 2015.	Student					

U15MEC20	3R	BASIC MECHANICAL		L	Т	Р	С	Μ			
		ENGINEERING		3	0	0	3	100			
Course Out	Course Outcomes										
At the end	of the	course, the students will be able t	:0 ,								
-	1. explain the fundamental principles of thermodynamics, its components and										
		problems.			10				_		
2. describe compor		explain the principles of thermal po	wer pl	ant	, IC	eng	ines	and			
3. analyse of refrig		eat transfer modes, mechanisms of lon.	heat tra	ans	fer a	nd p	orino	ciple			
4. identify	engi	neering materials, their properties, nunctions and operations of machine		ictu	ring	met	thoc	ls and			
5. explain drive.	the m	echanism of power transfer through	n belt, i	rop	e, cł	nain	and	gear			
UNIT I	FUN	DAMENTALS OF THERMODY	YNAM	1IC	S			9	9		
	Introduction to Thermodynamics – Concept of a System – Types of Systems – Thermodynamic Equilibrium – Properties - State – Process and Cycle – Zeroth Law – Energy Interactions – Heat and Work – Types of Work – Work interactions in a closed System for various processes – First Law: Cycle and Process – Specific Heats (C_p and C_v) – Heat Interactions in a Closed System for Various Processes – Limitations of First Law – Concept of Heat Engine (H.E.) and Reversed H.E. (Heat Pump and Refrigerator) – Efficiency/COP – Second Law: Kelvin-Planck and Clausius Statements – Carnot Cycle – Carnot Efficiency – Statement of Clausius Inequality – Property of Entropy – T-S and P-V Diagrams.						ee - eat sed em of und nck -				
UNIT II	Then Boil Cocl Turb Velo Cone	ERMAL POWER PLANT AND I mal Power Plant Layout – Four Circ ers: Fire Tube vs. Water Tube – man Boilers – Steam Turbines ines – Compounding of Turbines: Ficity Compounding – Pressure Ve densers: Types – Jet & Surface C ers – Internal Combustion Engines	uits – Babco : Impu Pressure clocity	Ra ock ulse e C Co sers	ankin & vs. omp mpo S –	ie C Wild Re ound undi C	cox eacti ding ing cooli	ion ; - ing	9		

	Engines – S.I. Engine and C.I. Engine: Differences – P-V and T-S							
	Diagrams.							
UNIT III	REFRIGERATION SYSTEM AND HEAT TRANSFER	9						
	Principle and Working of Standard Vapour Compression Refrigeration System and Brief description of Refrigerants – Modes of Heat Transfer – Thermal Resistance Concept – Conduction: Composite Walls and Cylinders – Combined Conduction and Convection: Overall Heat Transfer Co-efficient.							
UNIT IV	MANUFACTURING PROCESSES, MACHINE TOOLS 9							
	AND MACHINING PROCESSES							
	Engineering Materials: Classification – Properties of Materials – Manufacturing Processes: Metal Casting – Moulding – Patterns – Metal Working: Hot Working and Cold Working – Metal Forming: Extrusion – Forging – Rolling – Drawing – Welding: Welding: Gas Welding and Arc Welding – Soldering – Brazing – Lathe Machine – Lathe Operations – Milling Machine-Types – Milling Operations – Shaper and Planer Machines: Differences – Quick-Return Motion Mechanism – Drilling Machine: Operations – Grinding Machine: Operations.							
UNIT V	POWER TRANSMISSION AND AUTOMOTIVE VEHICLE Transmission of Mechanical Power: Belt Drives – Simple Numerical Problems – Gear Drives – Simple Numerical Problems – Layout of Automobile Transmission – Brakes – Types – Clutch – Differential.	9						
	Total: 45 Hor	ırs						

TEX	TEXT BOOKS						
1.	Rudramoorthy R, " <i>Thermal Engineering</i> ", Tata McGraw Hill Book Company, New Delhi, 2003						
2.	Hazra Chowdary, S.K. and Bose, "Workshop Technology", Vol. I and II, Media Promoters and Publishers Pvt. Ltd., 2002						
REF	ERENCE BOOKS						
1.	P. L. Ballaney, " <i>Thermal Engineering: Engineering Thermodynamics and Energy Conversion Techniques</i> ", Khanna Publishers, 5 th Edition, 2010.						
2.	Roy, K.P., and Hazra Chowdary, S.K., " <i>Elements of Mechanical Engineering</i> ", Media Promoters and Publishers Pvt. Ltd., 2002						
3.	R S Khurmi, "Theory Of Machines", S CHAND, 14th Edition, 2005.						
4.	Kirpal Singh, "Automobile Engineering", Vol I,II – Standard Publishes Distributors - Delhi 13 th Edition, 2012.						

U15BEE20	BASIC ELECTRICAL	L	Т	Р	С	Μ				
UI5BEE20	ENGINEERING	2	2	0	3	100				
	Course Outcomes									
	f the course, the students will be able to,									
1. analyze t	he behavior of circuit elements in electric cir	cuits.								
2. explain t	ne principles of operation of magnetics circu	its and tr	ansfo	orme	rs.					
	he electromagnetic energy conversion and uction motors.	operating	g prin	ncipl	e of	three				
4. analyze DC mach	he construction and working principles of ines.	synchroi	nous	mac	hine	s and				
5. explain t	ne principles of operations of single phase in	duction a	and s	tepp	er m	otors.				
UNIT I	Fundamental laws of Electrical Engine Elements	ering a	nd (Circ	uit	15				
	Electric Current – Coulomb's Law – Ohm's Law – Faraday's Law of Electromagnetic Induction – Kirchhoff's Laws – Ideal Independent Current and Voltage Sources – Reference Directions and Symbols – Energy and Power – Resistance Parameter – Inductance Parameter –Capacitance Parameter – Series and Parallel Combinations of Resistances – Series and Parallel Combinations of Capacitances – Series and Parallel Combinations of Inductances –RLC Series-Parallel Circuits– Resonance – Delta-Star and Star-Delta Transformations.									
UNIT II	Magnetic Circuits and TransformersAmpere's Law – Basic Definition: Flux, Flux Density, FieldStrength, Permeability, Reluctance, Permeance – Theory ofMagnetism –Hysteresis and Eddy-Current Losses - MagneticCircuit -Self Inductance, Mutual inductance, Co-efficient ofCoupling- Comparison between Electric and MagneticCircuits–Transformers – Theory of Operation and Developmentof Phasor Diagrams – Equivalent Circuit–Parameters from No-Load Tests – Efficiency and Voltage Regulation.									
UNIT IIIElectromagnetic Energy Conversion and Three Phase Induction motorIntroduction-Basic Analysis of Electromagnetic Torque - Three Phase Induction Motor - Revolving Magnetic Field -										

UNIT	IV	Construction- Working Principle- Types-Speed-Torque Characteristic – Starting Torque and Maximum Developed Torque – Parameters from No Load and Blocked rotor Tests – Equivalent Circuit – Applications of Three phase Induction Motors. Three Phase Synchronous Machines and DC Machines Generation of a Three Phase Voltage– Synchronous Generator- construction and working principle-Phasor Diagram and Equivalent Circuit. DC Machines- DC Generator-construction– working principle- EMF equation-Types of DC Generator, DC motor-working principle –Types of DC Motor-Motor Speed torque Characteristics-starters for DC Motors.	12						
UNIT	V	Single Phase Induction Motors and stepper Motors Single Phase Induction Motor-Construction-working principle-	9						
		Types: capacitor start induction motor-Construction-working principle- Types: capacitor start induction motor-Capacitor start capacitor run induction motor-shaded pole induction motor- Applications – Stepper Motors – Construction- working principle- types: permanent magnet stepper motor-variable reluctance stepper motor and hybrid stepper motor-Applications.							
		Total: 60 F	Iours						
TEXT	BOC	DKS							
1.		Theraja and A. K. Theraja, "A Text Book of Electrical Technolog nand Publication, Vol 2, 2014.	y",						
2.		udhakarand S.P Shyam Mohan, "Circuits, Network Analysis and thesis", Tata McGraw Hill, Fifth Edition, 2015.							
REFE	REN	CE BOOKS							
1. D.P. Kothari and I.J. Nagrath, "Basic Electrical Engineering", TataMcG Hill, Fourth Edition, 2011.									
2.	2. V.K.Metha, RohitMetha, "Principles of Electrical Engineering and Electronics", Second edition, S.Chand Publication, 2015.								
3.	S.K.Bhattacharya "Basic Electrical and Electronics Engineering" Pearson Education India, 2012.								
4.		. Mittle and Aravind Mittal "Basic Electrical Engineering", Graw Hill, Second edition, 2005.	Tata						

U15CHE20)4BR		IRONMENTAI EERING SCIEN		L 3	Т 0	P 0	C 3	M 100	
Course Out At the end o		ourse, the stud	lents will be abl	e to,						
1. explain th	1. explain the eco system components and the various types of biomes.									
2. describe t	he conc	epts of ecosyst	tem and Biodive	rsity.						
3. describe	about n	atural resource	s like food, soil,	water and	mine	rals.				
4. identify t remedial	-		Energy, ozone,	global wai	rming	g and	ca	n su	iggest	
5. Analyses	the Ind	ian scenario in	human populati	on and the	envir	onme	ent.			
UNIT I	UNIT I HUMANS AND SUSTAINABILITY, ECOLOGY AND SUSTAINABILITY, ECOSYSTEMS, EVOLUTION, CLIMATE AND BIODIVERSITY									
	Living More Sustainability – Population Growth-Economic Growth-Economic Development – Resources – Environmental Problems Causes and Connections. The Nature of Ecology – The Earth Life Support Systems – Ecosystem Components – Energy Flow in Ecosystems – Matter Cycling in Ecosystems. Origin Of Life – Evolution and Adaption – Ecological Niches and Adaption – Speciation – Extinction and Biodiversity. Desert and Grassland Biomes – Forest and Mountain Biomes – Saltwater Life Zones.									
UNIT II	BIOD Comm Specie Transi Huma Impac Forest Nation Sustai India Nation Biodiv	s Interactions tion – Popula n Impacts on 1 ts on Biodiver Resource and nal Parks – Na ning Aquatic I – Understandin – Endanger versity – Conse	ECOLOGY e and Species D – Ecological ation Dynamics Ecosystems -Le rsity – Managin d Management ational Reserves Biodiversity. Int ng Biodiversity red and Ender ervation of Biodi pproach – Reco	Succession and Carr arning from g and Sus – Tropica – Ecologi roduction – India as nic Specie versity. Th	Types I-Con Tying In Na Stainin I Des Stainin I Des Stainin St	nmur Cap ture. ng F fores Resto odive Iegac Thu gal A	peci iities acit Hu ores tatic ratic ersit liver eats	es – s in man ts – on – y in rsity s to		

Increasir Manager and Deg and Rer Wastage Sources	oduction – Nutrition and Environmental Effects – g Food Production – Protecting Food Resources -Pest nent – Solution-Sustainable Agriculture - Soil Erosion radation – Soil Conservation. Water's Importance-Use newal – Supplying More Water – Reducing Water – Too Much Water – Water Pollution-Types-Effects and – Pollution of Freshwater Streams –Lakes and Aquifers – resources - Environmental Effects of Using Mineral es.
OZONE Evaluatin Non-Rer – Using Geothern Structure Pollution Outdoor Pollution Reducing Greenho Factors A Warmer Ozone I Layer. V industria Reuse –	Y, AIR POLLUTION, CLIMATE CHANGE AND LOSS, SOLID AND HAZARDOUS WASTE9Ing Energy Resources – Non-Renewable Fossil Fuels – wewable Nuclear Energy – Improving Energy Efficiency Renewable Energy to Provide Heat and Electricity – mal Energy – Hydrogen – A Sustainable Energy Strategy.9Ind Science of the Atmosphere – Outdoor Air a – Photochemical and Industrial Smog – Regional Air Pollution from Acid Deposition – Indoor Air a – Harmful Effects of Air Pollution – Preventing and g Air Pollution. Past Climate Change and The Natural use Effect – Climate Change and Human Activities – Affecting the Earth's Temperature – Possible Effects of a World – Dealing With the Threat of Global Warming – Depletion in the Stratosphere – Protecting the Ozone Vasting Resources – Producing Less Waste – The Eco- I Revolution and Selling Services Instead of Things – Recycling – Burning and Burying Solid Waste.9
POPUL Environ World – Control	NABILITY: THE INDIAN SCENARIO, HUMAN 9 ATION AND THE ENVIRONMENT 9 nental Ethics – The Population Scenario-India and The Variation of Population Among Nations – Population 9 – Environment and Human Health – Human Rights – lucation – HIV/AIDS – Woman and Child Welfare. 9

TE	TEXT BOOK						
1.	G .Tyler Miller,Jr, "Environmental science", Thomson south-western, 11 th Edition, 2007						
RE	REFERENCE BOOKS						
1.	Mackenzie I. Davis, Susan J.Masten, "Environmental engineering and science", Mc-Graw Hill Education (India) Pvt. Ltd., New Delhi, 2013						
2.	William W Nazarof and Lisa Alvarez-Cohen, "Environmental Engineering Science", John wiley, 2014						
3.	Anubha Kaushik – C.P. Kaushik, "Environmental Science and engineering", New age international (p) Ltd. Publishers, 2006						

U15BEE205	R]		-	ELI HINF	-		ICAL		L	-	-	C		lark	S
			12.	and a	51111	עש		U		3	0	0	3	I	.00	
Course Out																
At the end o			,													
1. analyze th	1. analyze the behavior of circuit elements in electric circuits.															
2. explain th	e prin	ciples c	of ope	erat	tion	of	mag	gnetics	circui	its ar	nd tra	ansf	orme	ers		
3. analyze t	he ele	ctromag	gneti	ic e	energ	gy	con	versio	n and	ope	ratin	g pi	rinci	ple	of	three
phase ind	uction	motors	5.													
4. analyze th	ne con	structio	on an	d w	vorki	ing	g pri	nciples	s of sy	nchi	ono	us n	nach	ines	s and	1 DC
machines	•															
5. explain th	e prin	ciples o	of ope	erat	tions	s of	f sin	gle pha	ase in	ducti	on a	nd s	tepp	er i	mote	ors.
UNIT I	FUN	DAME	ENTA	AL	LA	WS	S O I	F ELE	CTR	ICA	L					15
	ENG	INEEI	RINO	G A	AND	D C	CIRC	CUIT	ELEN	/IEN	TS					
		ric Cur												•		
		of Elec		-												
		endent						0								
		tions a		-												
		neter –							-							
		s and I														
		lel Coi					_	-								
		binatio												lits-	-	
	Resonance – Delta-Star and Star-Delta Transformations.															
UNIT II		SNETI														12
	Ampere's Law - Basic Definition: Flux, Flux Density, Field															
	Strength, Permeability, Reluctance, Permeance - Theory of															
	Magnetism –Hysteresis and Eddy-Current Losses - Magnetic															
	Circuit -Self Inductance, Mutual inductance, Co-efficient of															
	Coupling- Comparison between Electric and Magnetic Circuits–Transformers – Theory of Operation and Development															
								•	<u>^</u>				-			
		asor D	-			· ·						ers fi	rom	No	-	
	Load	Tests -	- Effi	1010	ency	an	a v	oltage	кеgu	atioi	n.					

UNIT III	ELECTROMAGNETIC ENERGY CONVERSION AND THREE PHASE INDUCTION MOTOR Introduction-Basic Analysis of Electromagnetic Torque - Three Phase Induction Motor – Revolving Magnetic Field – Construction- Working Principle- Types-Speed-Torque Characteristic – Starting Torque and Maximum Developed Torque – Parameters from No Load and Blocked rotor Tests – Equivalent Circuit – Applications of Three phase Induction	12
	Motors.	
UNIT IV	THREE PHASE SYNCHRONOUS MACHINES AND DC MACHINES Generation of a Three Phase Voltage– Synchronous Generator- construction and working principle-Phasor Diagram and Equivalent Circuit. DC Machines- DC Generator-construction– working principle- EMF equation-Types of DC Generator, DC motor-working principle –Types of DC Motor-Motor Speed torque Characteristics-starters for DC Motors.	12
UNIT V	SINGLE PHASE INDUCTION MOTORS AND STEPPER MOTORS Single Phase Induction Motor-Construction-working principle- Types: capacitor start induction motor-Capacitor start capacitor run induction motor-shaded pole induction motor- Applications – Stepper Motors – Construction- working principle- types: permanent magnet stepper motor-variable reluctance stepper motor and hybrid stepper motor-Applications. Total: 60	9 Hours

TEXT	BOOKS							
1.	B.L. Theraja and A. K. Theraja, "A Text Book of Electrical Technology",							
	S.Chand Publication, Vol 2, 2014.							
2.	A. Sudhakarand S.P Shyam Mohan, "Circuits, Network Analysis and							
	Synthesis", Tata McGraw Hill, Fifth Edition, 2015.							
REFEI	RENCE BOOKS							
1.	D.P. Kothari and I.J. Nagrath, "Basic Electrical Engineering", TataMcGraw							
	Hill, Fourth Edition, 2011.							
2.	V.K.Metha, RohitMetha, "Principles of Electrical Engineering and							
	Electronics", Second edition, S.Chand Publication, 2015.							
3.	S.K.Bhattacharya "Basic Electrical and Electronics Engineering" Pearson							
	Education India, 2012.							
4.	V.N. Mittle and Aravind Mittal "Basic Electrical Engineering", Tata							
	McGraw Hill, Second edition, 2005.							

Course Outcomes

At the end of the course, the student will be able to,

- 1. apply the principles of optics, electricity and elasticity to determine the engineering properties of materials.
- 2. evaluate the amount of iron content in the given sample using spectrophotometry, analyze the amount of chloride in a domestic water sample and analyse the quality of brass by estimating copper.
- 3. determine the resistivity of the given fuse wire used for house hold applications and determine the dissolved oxygen in two different water samples collected from the students residential areas.

List of Experiments (PHYSICS PART)

- Determination of rigidity modulus of the material using torsion pendulum.
 Determination of coefficient of viscosity of the given liquid using Poiseuille's method
 Determination of specific resistance of a given wire using Carey-Fosters bridge.
 Determination of Young's modulus of the material by uniform bending method.
 Determination of wavelength of the spectral lines using a spectrometer.
- 6. Determination of band gap energy of a semiconductor diode

List of Experiments (CHEMISTRY LAB)

Determination of dissolved oxygen in water by Winkler's method.
 Estimation of chromium in waste water.
 Determination of fluoride in water.
 Estimation of iron in water by spectrophotometric method.
 Estimation of chloride in water by argentometric method.
 Estimation of copper in brass solution by EDTA method.

		ENGIN	EERING	PRAC	TICES	L	Т	Р	С	Μ
U15E	PL207R	Ι	LABORA	TORY		0	0	4	2	100
Course	Outcome	5								
<u>Civil L</u>	<u>ab</u>									
At the	end of exp	eriments, tł	ne student	ts will l	oe able to),				
1.	plan the p	vipe connect	ions using	g PVC,	G.I pipes					
2.	analyze tl	ne process o	f wood sej	paratio	n with pro	oper typ	bes o	f joiı	nts u	sing
	tools and	machines								
COUR	SE OUTC	<u>OMES</u>								
Mecha	nical Lab									
At the	end of exp	eriments, th	ne student	ts will l	oe able to),				
1.	Demonstr	rate the meth	nod of mat	terial re	moval fr	om met	al co	mpo	nent	s and
	assemble	the compon	ents using	g sheet i	netals.					
<u>COUR</u>	<u>SE OUTC</u>	OMES								
Electri	cal and El	ectronics La	<u>ab</u>							
At the	end of exp	eriments, th	ne student	ts will k	be able to) -				
1.	Measure	and draw b	asic wave	e forms	using fu	inction	gene	rator	: & (CRO.
2.	Make sin	ple electron	ics circuit	t using j	passive c	ompone	ents a	and g	gener	al
	purpose I									
3.		ng electrica	devices	and ver	ifying th	eir prac	tical	appl	icati	on.
List o	of Experim	ents:								
	Civil Lab									
	Plumbin	g work								
1.	Basic pip	e connection	is (PVC) is	nvolvir	ng the fitt	ings lik	e val	ves,	taps	, and
	bends.									
2.	Mixed pip	be (PVC and	G.I) conr	nections	s involvir	ng the fi	itting	like	valv	ves,
	taps, and	bends.								
	Carpentr	y work								
3.		lap joint and	d cross lap	o joint.						
	Mechani	cal Lab								
	Sheet me	tal work								

1.	Design of square tray and funnel.
	Fitting work
2.	L-joint, V-joint
3.	Demonstration of welding classes
	Electrical and Electronics Lab
1.	Study of passive components.
2.	Measurement of waveform using CRO.
3.	Verification of truth tables of logic gates.
4.	Soldering practice using general purpose PCB.
5.	Residential house electrical wiring.
	1. Stair case wiring2. Doorbell Wiring
6.	Measurement of power factor using fluorescent lamp.
7.	Measurement of energy using energy meter for single phase system resistive load.

U15BEEL208R

Course Outcomes

At the end of experiments, the students will be able to,

- 1. apply basic circuit laws for calculating electric parameters of DC circuits.
- 2. determine and draw the mechanical, electrical and performance characteristics of DC Machines.
- 3. determine the efficiency and regulation of transformer under load and no load conditions.

List of Experiments:

	r · · · · · · ·
1.	Verification of Kirchhoff's laws.
2.	Verification of mesh analysis.
3.	Measurement of RLC series and parallel parameters.
4.	Measurement of RLC series and parallel resonance parameters.
5.	Open circuit and load characteristics on separately excited DC shunt generator.
6.	Load characteristics on DC shunt motor.
7.	Speed control of DC shunt motor.
8.	Load test on 3 phase induction motor.
9.	Speed control of 3 phase induction motor.
10.	Open circuit and short circuit test on single phase transformer.
11.	Load test on single phase transformer.
	Total: 60 Hours

Sona College of Technology, Salem

(An Autonomous Institution)

Courses of Study for B.E/B.Tech. Semester III under Regulations 2015R (CBCS)

Branch: Electronics and Communication Engineering

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit
		Theory				
1	U15MAT301CR	Transforms and Linear Algebra	3	2	0	4
2	U15EC301R	Electronic Devices	3	0	0	3
3	U15EC302R	Network Analysis and Synthesis	3	2	0	4
4	U15EC303R	Digital System Design	3	0	0	3
5	U15EC304R	Signals and Systems	3	2	0	4
		Practical			•	
6	U15EC305R	Electronic Devices Laboratory	0	0	2	1
7	U15EC306R	Digital Laboratory	0	0	2	1
8	U15ENG302R	English Laboratory	0	0	4	2
9	U15GE301R	Soft Skills and Aptitude - I	0	0	2	1
				To	tal Credits	23

Approved By

Chairman, Electronics and Communication Engineering BoS
Dr.R.S.SabeenianMember Secretary, Academic Council
Dr.R.ShivakumarChairperson, Academic Council & Principal
Dr.S.R.R.Senthil KumarConv to:Conv to:Dr.S.R.R.Senthil Kumar

Copy to:-

HOD/Electronics and Communication Engineering, Third Semester BE ECE Students and Staff, COE

At the end of each unit, the students will be able to -

- 1. Explain the concepts of Fourier series and generation of Fourier series for different mathematical functions
- 2. Form partial differential equations and solve standard types of first order PDE and linear PDE of second order with constant coefficients
- 3. State Z transform, discuss its properties, state and apply convolution theorem of Z-transform to various functions, form and solve the difference equations.
- 4. Define and explain vector spaces, linear independence and dependence of vectors and dimension of vector spaces
- 5. Describe linear operator, state rank-nullity theorem and apply the same to solve problems

UNIT FOURIER SERIES

I Dirichlet's Conditions – General Fourier Series – Fourier Series of Odd and Even Functions – Fourier Series for Functions of Period 2L – Half Range Sine and Cosine Series – Practical Harmonic Analysis.

UNIT PARTIAL DIFFERENTIAL EQUATIONS

II Formation of Partial Differential Equations – Partial Differential Equations of First Order - Linear Partial Differential Equations of First Order - Non-Linear Partial Differential Equations of First Order – Homogeneous Linear Partial Differential Equations with Constant Coefficients – Non-Homogeneous Linear Partial Differential Equations with Constant Coefficients – Solution of Second Order Partial Differential Equation.

UNIT LINEAR DIFFERENCE EQUATIONS AND Z-TRANSFORMS

III Linear Difference Equations - Homogeneous Equations - Second Order Linear Homogeneous Difference Equations with Constant Coefficients - Non-Homogeneous Equations - Z-Transforms - Inverse Z-Transforms - Properties of Z-Transforms with worked out Examples.

UNIT VECTOR SPACES

 IV Vector Spaces – Linear Combinations – Subspaces - Union of subspaces - Sums of Subspaces - Distributive Subspaces – Spans - Equality of Spans - Special Spans – Dependence and Independence of Vectors – Basis of a Vector Spaces – Dimensions of Vector Spaces

UNIT LINEAR TRANSFORMATIONS

 V Linear Transformations - Domain and Range - Kernel - Composition - Range Inclusion and Factorization - Transformations as Vectors - Invertibility - Determinants-2x2 nxn - Zero-One Matrices - Invertible Matrix Bases - Finite-Dimensional Invertibility -Matrices - Diagonal Matrices - Rank Nullity Theorem - Matrix Representation of Linear Operator, Change of Basis Matrix

TEXT BOOKS

- 1. Ramana B.V, *"Higher Engineering Mathematics"*, McGraw Hill Education (India) Pvt., Ltd., New Delhi, 2007
- 2. Seymour Lipschitz, Marc Lipson, "Linear Algebra Schaum's outline series", 4th Edition, 2005

REFERENCE BOOKS

- 1. Veerarajan.T., "Engineering Mathematics" 3rd Edition, Tata McGraw Hill, 2008
- 2. Erwin Kreysizig, "Advanced Engineering Mathematics", John Wiley and Sons, 10 e, 2010
- 3. Sharma J.N., Vasistha, "*Linear Algebra*", 11th Edition, Krishna Prakashan Media Pvt., Ltd., 2010
- 4. Paul R. Halmos, "Finite Dimensional Vector Spaces", Springer-Verlag, New York, 1958

15

15

15

15

75

Total

15

At the end of each unit, the students will be able to -

- 1. Study and analyze the behavior of semiconductor devices
- 2. Characterize the current flow of a bipolar transistor in CB,CE and CC configurations
- 3. Bias the transistors and FETs for amplifier applications
- 4. Study and analyze amplifier circuits using MOSFETs
- 5. Design BJT amplifiers with h- parameters

UNIT SEMICONDUCTOR THEORY AND SEMICONDUCTOR DIODES

I Energy Band Theory of Crystals – Insulators – Semiconductors – Metals – Mobility and Conductivity – Electrons and Holes in an Intrinsic Semiconductor – Donor and Acceptance Impurities – Charge Densities in a Semiconductor –The Hall Effect – Diffusion & Drift Current – The Continuity Equation–PNJunction –Forward and Reverse Bias of PN Diode – The Current Components in a *PN* Diode – The Volt–Ampere Characteristic – The Temperature Dependence of the *V/I* Characteristic – Diode Resistance – Space Charge or Transition Capacitance C_T – Charge-Control Description of a Diode – Diffusion Capacitance.

UNIT SPECIAL DIODES AND BJT

II Breakdown Diodes – The Tunnel Diode – The Semiconductor Photodiode – The Photovoltaic Effect – Light Emitting Diode – The Junction Transistor – Transistor Current Components – The Transistor as an Amplifier – Transistor Construction – The Common base Configuration – The Common Emitter Configuration – The CE Cut-off Region – The CE Saturation Region – Common Emitter Current Gain – The Common Collector Configuration – Analytical Expressions for Transistor Characteristics –The Phototransistor.

UNIT TRANSISTOR BIASING AND THERMAL STABILIZATION

III The Operating Point – Bias Stability – Fixed Bias – Collector to Base Bias and Voltage Divider Bias – Stability Factor– Stabilization Against Variations in I_{CO} – V_{BE} and β –Bias Compensation — Thermistor and Sensistor Compensation –Thermal Runaway – Thermal Stability –The Junction Field effect Transistor – The Pinch off Voltage V_P – The JFET Volt–ampere Characteristics –The FET Small signal Model.

UNIT MOSFET AND SPECIAL DEVICES

IV The Metal-oxide-semiconductor FET (MOSFET) – The Low-frequency Common Source and Common Drain Amplifiers – Biasing the FET – The FET as a Voltage Variable Resistor (VVR) – The Common Source Amplifier at High Frequencies – The Common Drain Amplifier at High Frequencies - Construction & Characteristics of UJT- SCR-TRIAC- DIAC.

UNIT LOW AND HIGH FREQUENCY ANALYSIS OF BJT

 Two-port Devices and the Hybrid Model – Transistor Hybrid Model – The *h* Parameters – Conversion Formulas for the Parameters of the Three Transistor Configurations – Analysis of a Transistor Amplifier Circuit Using *h* Parameters – Linear Analysis of a Transistor Circuit–Miller's Theorem and Its Dual – The Hybrid–pi (p) Common – emitter Transistor Mode – Hybrid–p Conductance – The Hybrid–p Capacitances – Validity of Hybrid–pi Model – Variation of Hybrid–pi Parameters – The CE Short circuit Current Gain–Single stage CE Transistor Amplifier Response – The Gain–bandwidth Product – Emitter Follower at High Frequencies.

TEXT BOOKS

03-6-2019

- 1 Millman and Halkias, "Integrated Electronics", 2nd Edition, Tata Mc Graw Hill, 2010.
- 2 Anil K. Maini and Varsha Agrawal, "*Electronics Devices and Circuits*", First Edition, Wiley Publications, 2009.

Total 45

9

9

9

9

9

REFERENCE BOOKS

- 1 Y.N. Bapat, "*Electronic devices and circuits, Discrete and Integrated*", 3rd Edition, Tata Mc Graw Hill, 2011
- 2 S. Salivahanan, N. Suresh Kumar and A. Vallavaraj, *"Electronic Devices and Circuits"*, 2nd Edition, TMH, 2007.

At the end of each unit, the students will be able to -

- 1. Solve network problems using mesh current and node voltage equations
- 2. Formulate and solve network equations using differential equations and thus, to design resonant circuits
- 3. Compute responses of first order and second order networks using time domain analysis and Laplace transforms
- 4. Analyze the circuits using network theorems
- 5. Synthesize one port and two port networks using transfer functions

UNIT NETWORK CONVENTIONS AND NETWORK EQUATIONS

I Reference Directions for Current and Voltage – Active Element Conventions – The Dot Convention for Coupled Circuits – Topological Description of Networks — Kirchhoff's Laws –Source Transformations – Loop Variable in DC Analysis – Node Variable in DC Analysis –Star to Delta and Delta to Star Transformations- Duality – State Variable Analysis.

UNIT TIME DOMAIN DC ANALYSIS AND INITIAL CONDITIONS IN NETWORKS 15

II General and Particular Solution using Differential Equations – Time Constants –The Integrating Factor – Initial Conditions in Elements – Geometrical Interpretation of Derivatives – A Procedure for Evaluating Initial Conditions – Initial State of a Network – Second Order Differential Equations for Internal Excitation.

UNIT APPLICATIONS OF LAPLACE TRANSFORMS IN CIRCUIT THEORY

III The Laplace Transformation –Basic Theorems for the Laplace Transform –Examples of the Solution of Problems using Laplace Transformation – Partial Fraction Expansion – Heaviside's Expansion Theorem –The Shifted Unit Step Function –The Ramp and Impulse Functions – Waveform Synthesis – The Initial and Final Values of f(t) and F(s) – The Convolution Integral – Convolution as a Summation.

UNIT IMPEDANCE FUNCTIONS AND NETWORK THEOREMS

IV The Concept of Complex Frequency – Transform Impedance and Transform Circuits – Series and Parallel Combinations of Elements – Superposition and Reciprocity Theorem.– Thevenin's and Norton's Theorem – Maximum Power Transfer Theorem – Tellegen's Theorem.

UNIT SYNTHESIS OF ONE PORT AND TWO PORT NETWORKS

 V Properties of L-C Immittance Functions – Synthesis of L-C Driving-Point Immittances– Properties of R-C Driving Point Impedances – Synthesis of R-C Impedance or R-L Admittances – Properties of R-L Impedances and R-C Admittances – Properties of Transfer Functions – Zeros of Transmission.

TEXT BOOKS

- 1. M.E.VanValkenberg, "Network Analysis", Prentice Hall India, 3rd E, 2002
- 2. A. Sudhakar, Shyammohan S Palli, "*Circuits and networks Analysis &Synthesi*", 4ndE,Tata McGraw Hill, 2010.

REFERENCE BOOKS

- 1. B. Somanathan Nair, S. R. Deepa, "*Network Analysis and Synthesis*", Reed Elsevier India Pvt. Ltd., 2012
- 2. F. F. Kuo, "Network Analysis and Synthesis", 2nd E, John Wiley, 2005
- 3. Charles A Desoer, Ernest S Kuh, "Basic Circuit Theory", McGraw Hill, 1969

15

15

15

Total 75

9

9

9

COURSE OUTCOMES

At the end of each unit, the students will be able to -

- 1. Explain number systems, logic gates, logic functions and simplify Boolean functions
- 2. Design and analyze combinational and sequential logic circuits through HDL models
- 3. Optimize combinational and sequential logic circuits
- 4. Design and implement shift registers and counters digital circuits
- 5. Design and Implement a memory cell and programmable logic devices

UNIT NUMBER SYSTEM, BOOLEAN ALGEBRA AND LOGIC GATES

 Review of Number Systems – Boolean Algebra – Basic Theorems and Properties of Boolean Algebra – Boolean Functions – Canonical and Standard Forms – Digital Logic Gates – Integrated Circuits – Map Method – Four Variable K-map – POS Simplification – Don't Care Conditions – Tabulation method - NAND and NOR Implementation – XOR Functions – TTL – ECL – CMOS Logic Circuits – Fan-in – Fan-out.

UNIT COMBINATIONAL CIRCUIT DESIGN

II Combinational Circuits – Analysis Procedures – Design Procedures – BCD to Excess-3
 – Binary Adders and Subtractors – Decimal Adder – Binary Multiplier – Magnitude
 Comparator – Decoders – Encoders – Multiplexers – Demultiplexers-Introduction to
 Verilog – HDL Models for Combinational Circuits.

UNIT SYNCHRONOUS SEQUENTIAL LOGIC

III Sequential Circuits – SR Latch – D-Latch – D-JK-T Flip-Flops – Master Slave JK Flip-Flop – Conversion of Flip Flops – Analysis of Clocked Sequential Circuits – State Diagram – State Table – State Reduction and Assignment – Verilog HDL Models for Synchronous Sequential Circuits.

UNIT REGISTERS AND COUNTERS

IV Registers – Shift Registers – SISO – SIPO – PIPO – Synchronous Counters – Updown Binary Counter – Ring Counter – Johnson Counters – Asynchronous Counters – Asynchronous Design Procedure – Race Free State Assignment – Hazards – Verilog HDL Models for Registers and Counters.

UNIT MEMORY AND PROGRAMMABLE LOGIC

 V Classification of memories: RAM-ROM-PROM-EPROM-EEPROM - Memory Decoding –Implementation of combinational logic using PROM - Programmable Logic Array – Programmable Array Logic – HDL Implementation of Simple Test Bench for 4-bit Binary Adder .

TEXT BOOK

1. M. Morris Mano and Michael D. Ciletti – '*Digital Design with an Introduction to the Verilog HDL*', 5th E, Pearson Education, 2013

REFERENCE BOOKS

- John F Wakerly 'Digital Design Principles and Practices', 3rd Edition, Prentice Hall India, 2001.
- **2.** ZviKohavi, '*Switching and Finite Automata Theory*', Princeton University, New Jersey, 3rd E, 2009.
- **3.** Schilling, Herbert Taub and Donald, 'Digital Integrated Electronics', Tata McGraw-Hill, 2008.
- 4. JayaramBhasker, '*A Verilog HDL Primer*', 2nd E, BS publications, 2001

9

9

Total 45

At the end of each unit, the students will be able to -

- 1. Classify the signals as continuous time and discrete time signals and classify systems based on their properties
- 2. Determine the response of LTI system using convolution sum for DT system and Convolution Integral for CT system
- 3. Apply Fourier series and Fourier Transform for periodic Signals
- 4. Analyze system using Laplace transform and realize the structure for CT system
- 5. Analyze system using Z transform and realize the structure for DT system

UNIT CLASSIFICATION OF SIGNALS AND SYSTEMS

I Continuous-Time and Discrete-Time signals-The Unit Impulse Unit Step, Unit Ramp Signals and other Basic Signals - Operation of Signals -Time Shifting - Time Reversal -Amplitude Scaling - Time Scaling - Signal Addition - Multiplications - Continuous-Time and Discrete-Time Systems- Basic System Properties - Systems With and Without Memory - Causality - Stability - Time Invariance - Linearity.

UNIT LINEAR TIME- INVARIANT SYSTEMS

II Discrete-Time LTI system: TheConvolution sum-tabulation method-matrix multiplication method-graphical and analytical approach – Solution of Difference Equations.

Continuous-Time LTI Systems: The Convolution Integral - graphical and analytical approach – Properties of Linear Time-Invariant Systems – Solution of Differential Equations.

UNIT ANALYSIS OF CT SIGNALS USING FOURIER SERIES & FOURIER 15 III TRANSFORM

Fourier Series Representation(Trigonometric and Exponential) of Continuous-Time Periodic Signals – Properties of Continuous-Time Fourier Series – Representation of Aperiodic Signals: The Continuous-Time Fourier Transform – The Fourier Transform for Periodic Signals – Properties of the Continuous-Time Fourier Transform – The Convolution Property – The Multiplication Property

UNIT ANALYSIS OF SIGNALS AND SYSTEMS USING LAPLACE TRANSFORM 15

IV The Laplace Transform – The Region of Convergence for Laplace Transform– The Inverse Laplace Transform using Partial fraction– Properties of the Laplace Transform– System Function and Block Diagram Representations-Direct Form I and Direct Form II.

UNIT ANALYSIS OF SIGNALS AND SYSTEMS USING Z-TRANSFORM

 V The Z-Transform – The Region of Convergence for the Z-Transform –The Inverse Z-Transform using Partial fraction and Long division method– Properties of the Z-Transform – System Function and Block Diagram Representations-Direct Form I and Direct Form II.

Total 75

15

15

15

TEXT BOOKS

- 1. Alan V. Oppenheim, Alan S. Willsky, S. Hamid Nawab, "Signals and Systems", 2nd E, Prentice Hall India, 2010
- 2. A.Anand Kumar, "Signals and Systems", 3rd Edition, Prentice Hall India, 2013

REFERENCE BOOKS

- 1. M .J. Roberts, "Signals & Systems Analysis using Transform Methods & MATLAB", Tata McGraw Hill, 2007
- 2. A. NagoorKani, "Signals & Systems", Tata McGraw Hill, 2010
- 3. John G. Proakis, Dimitris G. Manolakis, "Digital Signal Processing, Principles, Algorithms, and Applications", 4th E, PHI, 2007
- 4. Robert A. Gable, Richard A. Roberts, "Signals & Linear Systems", 3rd E, John Wiley, 1995
- 5. Edward W Kamen& Bonnie's Heck, "Fundamentals of Signals and Systems", Pearson Education, 2007

At the end of each experiment, the students will be able to -

- 1. Operate electronic test equipment and hardware tools and to use the same for conducting experiments.
- 2. Draw and analyze VI characteristics of various diodes.
- 3. Analyze the input and output characteristics of various transistors and plot the frequency response of amplifier circuits.

Exp.No List of Experiments:

- 1. Study of
 - i. Cathode Ray Oscilloscope and DSO
 - ii. Regulated Power Supply, Single and Dual Mode
 - iii. Sine, Square, and Triangular Waves Function Generator
 - iv. Bread Board Connection Conventions
- 2. To draw and analyze V-I Characteristics of given Si and Ge Diodes
- 3. To draw and analyze V-I Characteristics of Zener Diode and Prove that the output voltage gets regulated after the breakdown voltage for variable input voltage in the range of 0.5 V to 8 V of a given Zener Diode
- 4. To draw and analyze the Input and Output Characteristics of BJT (NPN)
- 5. To draw and AnalyzeFrequency Response of BJT (CE) using Fixed Bias Amplifier Circuit
- 6. To draw and analyze Frequency Response of BJT (CE) using Voltage Divider Bias (self-bias) with and without bypassed Emitter Resistor (CE)
- 7. To draw and analyze the Characteristics of N-channel JFET
- 8. To draw and analyze the Characteristics of N-channel MOSFET
- 9. To draw and analyze Characteristics of the following Special Diodes
 - i. Tunnel diode
 - ii. Photo diode
 - iii. Light emitting diode

Total Hours:30

At the end of each unit, the students will be able to -

- 1. Design and implement combinational circuits using logic gates and breadboards
- 2. Design and implement sequential circuits using logic gates and breadboards

3. Write programs in Verilog HDL for structural, behavioral and data flow models for combinational and sequential circuits

Exp. No. List of Experiments:

- 1. Design and implementation of
 - (a) Half Adder and Full Adder, Half Subtractor and Full Subtractor
 - (b) 4-bit Parallel Adder cum Subtractor
 - (c) Magnitude Comparator
- Design and implementation of
 (a) Code Converters Binary to Gray and Gray to Binary
 b) BCD to Excess 3 and Excess 3 to BCD
- **3.** Design and implementation of
 - (a) Multiplexer and Demultiplexer
 - (b) Decoder
 - (c) Encoder
 - (d) Parity Generator and Checker
- 4. Design and implementation of
 - (a) Asynchronous Counter
 - (b) Synchronous Counter
- 5. Design and implementation of
 - (a) Shift Registers SISO, SIPO and PIPO
- 6. Write a Verilog HDL program for combinational circuits
 - (a) Basic gates AND, OR, NOT, NAND, NOR, EXOR
 - (b) Half Adder and Full Adder, Half Subtractor and Full Subtractor
 - (c) Magnitude Comparator
- 7. Write a Verilog HDL program for sequential circuits
 - a) Flip Flops SR, JK, T and D
 - b) Asynchronous Counter
 - c) Synchronous Counter

Total Hours:30

U15ENG302R

COURSE OUTCOMES

At the end of each experiment, the students will be able to -

- 1. Demonstrate active listening skills
- 2. Read fluently and comprehend the given texts.
- 3. Make power point presentations and perform effectively in interviews and group discussions

List of Experiments:

1. Listening comprehension

A pre-recorded audio for 7 minutes is to be played twice and a passage with blanks in it is to be given to the students. The students have to fill in the blanks by typing appropriate words based on the audio.

2. Reading comprehension

Based on a given passage, the students have to read and do the following exercises:

- a. Sentence completion with one word substitution is to be given to students, according to the passage the students have to click the correct option.
- b. Multiple choice questions are to be given and the students have to click the correct option.
- c. Vocabulary in the form of synonyms and antonyms is to be given and the students have to click the correct option
- 3. Face to face conversations and role play activities

A situation is to be given and the students have to take up roles and engage in conversations. The students are to be assessed on the following areas -

- a. Justification to the role given
- b. Clarity, audibility and fluency
- c. The contents of the conversation
- d. Body language
- 4. Making presentations

Students need to make individual presentation for 5 to 10 minutes approximately by using power point (ppts).

Marks are to be awarded based on the following criteria:

- a. Body language (facial expression, gestures and posture)
- b. Content (the subject matter, introduction and conclusion)
- c. Language (fluency, grammatical accuracy)
- d. Effective use of the power point (style of designing the slides, space, font size and focus on contents)
- 5. Job application and covering letter

Students have to write covering letter and resume. Students are to be assessed based on whether they have included all the following points in letter and application.

- a. The objective (career objective)
- b. Educational qualification (in the reverse order)
- c. Skills and assets
- d. Paper presentations and conferences attended
- e. Personal profile
- f. declaration
- 6. Group Discussion (GD)

Students in a group of 4 to 5 are to be given a topic for discussion amongst themselves for about 10 to 15 minutes. The following points are to be assessed.

- a. Initiation
- b. Content
- c. Language
- d. Use of connectives
- e. Team cooperation
- f. Leadership quality
- g. Use of illustrations
- h. Conclusion
- 7. Project proposals writing

Students are asked to write a project proposal on a topic of research/engineering solution within their discipline for funding from outside. The following points are to be assessed.

- a. Collection, analysis and interpretation of data
- b. Correlating the particular data to proposal
- c. Presenting the facts in proper sequence and relevance
- d. Proposed technical solution to the engineering problem
- e. Budget preparation and justification
- f. Time lines of project progress
- 8. Technical report writing

Students are asked to write a technical report on a given research work recently published in reputed journals (ideally, IEEE transaction research paper is to be given to the students for writing a report on it). The following points are to be assessed.

- a. Interpretation of results of research work
- b. Critical and significant outcome of the research work
- c. Presenting the results in concise and focused bulleted points
- d. Future scope discussion
- e. One suggestion to improve the research work
- 9. Interview skills

Interview practices are to be conducted. The students are to be assessed on the following criteria

- a. Dress code
- b. Body language
- c. Confidence level
- d. Handling stress
- e. Language quality / content
- f. Answers / relevant discussion

Total Hours: 60

Semester-III	U15GE301R:SOFT SKILLS AND APTITUDE – I L T P C Marks 0 0 2 1 100
Course Outcome	
At the end of the	ourse the student will be able to:
1. Demonstrate c	pabilities in specific soft-skill areas using hands-on and/or case-study approaches
-	of greater intricacy than those in BA-I and II in stated areas of quantitative aptitude
and logical rea	
3. Demonstrate h specific topics	gher than BA-I and II levels of verbal aptitude skills in English with regard to
specific topics	Demonstrating soft skill conchiliting with reference to the following
	Demonstrating soft-skill capabilities with reference to the following topics:
	-
	a. Attitude building
1.Soft Skills	b. Dealing with criticism
	c. Innovation and creativity
	d. Problem solving and decision making
	e. Public speaking
	f. Group discussions
	Solving problems with reference to the following topics:
	a. Numbers: Finding units digit, Power rule
	 b. Base system – Progressions: Arithmetic, geometric and harmonic c. HCF and LCM
	d. Averagese. Percentages
	f Datio and proportion
2. Quantitative A	
and	g. Ages h. Partnership
Logical Reas	ning i. Profit and loss
	j. Mensuration: Area, perimeter, volume and Surface area
	k. Coding and Decoding: Numbers, alphabet, alphanumeric coding and
	Artificial language
	1. Direction Sense
	m. Symbols and series: Numbers, alphabet, symbols, pictures and
	alphanumeric
	n. Seating arrangement
	Demonstrating English language skills with reference to the following
	topics:
	a. Verbal analogy
3 3 7. 1 1 4 4 4 7	b. Tenses
3. Verbal Aptitud	c. Prepositions
	d. Reading comprehension
	e. Choosing correct / incorrect sentences
	f. Describing pictures

Sona College of Technology, Salem

(An Autonomous Institution)

Courses of Study for B.E/B.Tech. Semester IV under Regulations 2015R (CBCS)

Branch: Electronics and Communication Engineering

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit
		Theory				
1	U15MAT401CR	Probability and Stochastic Processes	3	2	0	4
2	U15EC401R	Engineering Electromagnetics	3	2	0	4
3	U15EC402R	Electronic Circuits	3	0	0	3
4	U15EC403R	Linear Integrated Circuits	3	0	0	3
5	U15EC404R	Digital Signal Processing	3	2	0	4
6	U15EC405R	Analog Communication Systems	3	0	0	3
		Practical				
7	U15EC406R	Linear Integrated Circuits Laboratory	0	0	2	1
8	U15EC407R	Electronic Circuits and Simulation Laboratory	0	0	2	1
9	U15EC408R	Digital Signal Processing Laboratory	0	0	2	1
10	U15GE401R	Soft Skills and Aptitude - II	0	0	2	1
	1		I	Т	otal Credits	25

Approved By

Chairperson, Electronics and Communication Engineering BoSMember Secretary, Academic CouncilChairperson, Academic Council & PrincipalDr.R.S.SabeenianDr.R.ShivakumarDr.S.R.R.Senthil Kumar

Copy to:-

HOD/Electronics and Communication Engineering, Fourth Semester BE ECE Students and Staff, COE

U15MAT401CR

PROBABILITY AND STOCHASTIC PROCESSES

COURSE OUTCOMES At the end of each unit, the students will be able to -Work out problems on random variables and distinguish between random and stochastic processes. 1 2. Model communication system as a stochastic process. 3. Characterize LTI systems driven by a stationary random process using autocorrelation and power spectral density functions. 4. Measure and analyze correlation functions and distribution functions. 5. Analyze the probability distribution functions of noise in a communication link. UNIT **RANDOM VARIABLE** 15 Random Variable Concept - Distribution Function - Density Function - Gaussian Random Ι Variable - Other Distributions-Binomial-Poisson-Uniform-Exponential and Density Examples -Conditional Distribution and Density Functions - Expectation - Moments - Functions That Give Moments-Moment Generating Function only - Transformations of a Random Variable. UNIT MULTIPLE RANDOM VARIABLES 15 Vector Random Variables - Joint Distribution and its Properties - Conditional Distribution and Π Density - Statistical Independence - Distribution and Density of a Sum of Random Variables -Central Limit Theorem-equal and unequal distributions statement only - Expected Value of a Function of Random Variables - Jointly Gaussian Random Variables - Transformation of Two Dimensional Random Variables. UNIT **RANDOM PROCESSES – TEMPORAL CHARACTERISTICS** 15 Random Process Concept - Stationarity and Independence - Correlation Functions - Measurement ш of Correlation Functions - Gaussian Random Processes - Poisson Random Process. RANDOM PROCESSES –SPECTRAL CHARACTERISTIC 15 UNIT Power Density Spectrum and its Properties - Relationship Between Power Spectrum and IV Autocorrelation Function - Cross-Power Density Spectrum and its Properties - Relationship between Cross-Power Spectrum and Cross-Correlation Function - Power Spectrums for Discrete-Time Processes and Sequences - White Noise Definition. LINEAR SYSTEMS WITH RANDOM INPUTS UNIT 15 Linear System Fundamentals - Random Signal Response of Linear Systems - System Evaluation V Using Random Noise - Spectral Characteristics of System Response. 75 Total TEXT BOOKS Peebles Jr. P. Z., "Probability Random Variables and Random Signal Principles", Tata McGraw-Hill 1. Publishers, New Delhi, 4th Edition, 37th Reprint Edition, 2016. Veerarajan. T., "Probabilitiy, Statistics and Random process", Tata McGraw-Hill Publications, Second 2. Edition, New Delhi, 2002. **REFERENCE BOOKS** A. Papoulis, "Probability, Random variables and Stochastic Processes", McGraw Hill, 4th Edition, 1 2002. John J. Shynk, "Probability, Random Variables, and Random Processes: Theory and Signal Processing 2. Applications", John Wiley, 2012. Roy D. Yates and David J. Goodman, "Probability and stochastic processes", John Wiley, 1999. 3. 4. Miller S. L. and Childers S. L., "Probability and Random Processes with applications to Signal Processing and Communications", Elsevier Inc., First Indian Reprint 2007.

ENGINEERING ELECTROMAGNETICS

	3 2 0	4
COUR	SE OUTCOMES	
At the	end of each unit, the students will be able to	
1.	Apply vector calculus to solve static electric and magnetic field problems for different engineering applications.	
2.	Solve Maxwell's equations using vector calculus by using three standard coordinate systems.	
3.	Analyse electromagnetic wave propagation in guiding media under various matching conditions.	
4.	Analyse and compute the power flow mechanisms in bounded and unbounded medium.	
5.	Deduce EM wave propagation in free space and dielectric medium.	
UNIT	INTRODUCTION TO ELECTROSTATICS	15
I	Scalars and Vectors – Vector Algebra – Rectangular Co-ordinate System – Vector Components and Unit Vector – Vector Field – Circular Cylindrical Coordinate System – Spherical Coordinate System – Conversion of Coordinates from One System to Other System – The experimental law of Coulomb – Electric Field Intensity – Field due to a Continuous line-Surface and Volume Charge Distribution – Field of a Line Charge-Finite- Infinite – Field of a Infinite Sheet of Charge – Electric Flux Density – Gauss Law – Applications of Gauss's Law – Divergence – The Vector Operator and The Divergence Theorem.	
UNIT II	ELECTROSTATIC POTENTIAL AND DIELECTRICS Energy Expended in Moving a Point Charge in an Electric Field – Line Integral – Definition of Potential Difference and Potential – Potential Field of a Point Charge – Potential Gradient – The Dipole – Boundary Conditions for Perfect Dielectric Material – Capacitance – Examples of Capacitance – Capacitance of Two Wire Lines – Derivation of Poisson's and Laplace's Equations – Examples of Poisson's and Laplace's	
UNIT	STEADY MAGNETIC FIELD AND ITS FORCES	15
III	The Biot-Savart Law – Ampere's Circuital Law – Curl – Stokes Theorem – Magnetic Flux and Magnetic Flux Density – The Scalar and Vector Magnetic Potential – Force on a Moving Charge (Lorentz Force Equation) – Force on a Differential Current Element – Force Between Differential Current Element – Force and Torque on a Closed Circuit.	
UNIT	TIME VARYING FIELDS AND PLANE WAVE	15
IV	Faraday's Law – Displacement Current – Maxwell's Equation in Point Form – Maxwell's Equation in Integral Form – Wave Propagation in Free Space – Wave Propagation in Dielectric – Poynting's Theorem and Wave Power – Propagation in Good Conductors-Skin Effects – Wave Polarization	
UNIT	ELECTROMAGNETIC WAVE REFLECTION	15
V	Reflection of Uniform Plane Waves at Normal Incidents – Definition of Standing Wave Ratio – Wave Reflection from Multi-interfaces– Plane Wave Reflection at Oblique Incidence Angles – Total Reflection and Total Transmission of Obliquely Incident Waves Horizontal and Vertical polarization-Brewster's Angle.	
	Total	75
TEXT B	BOOK	
1.	W. H. Hayt and J. A. Buck, "Engineering Electromagnetics", TATA McGraw-Hill, 8th Edition, 2014.	
REFER	ENCE BOOKS	
	Matthew N. O. Sadiku and S. V. Kulkarani, " <i>Principles of Electromagnetics</i> ", 6 th Edition Oxford University Press, 2015	
	John D. Kraus and Daniel A. Fleisch, " <i>Electromagnetics with Applications</i> ", 5 th Edition, McGraw F InternationalEditon, 1999.	Hill
	E. C. Jordan and K. G. Balmain, " <i>Electromagnetic waves and Radiating Systems</i> ", Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1968.	

U15EC	402R ELECTRONIC CIRCUITS		Т 0	P 0	C 3
COUR	E OUTCOMES				
	nd of each unit, the students will be able to				
	ribe and analyze negative feedback amplifier circuits.				
2. Desi	gn and analyze stability and different types of oscillator circuits.				
3. Desi	gn and analyze different types of waveshaping and multivibrator circuits				
4. Desc	ribe and analyze the operation of power circuits and systems.				
5. Ana	yze and design multistage amplifiers with given conditions				
UNIT	FEEDBACK AMPLIFIERS				9
Ι	Classification of Feedback Amplifiers – Feedback Concept – Transfer Gain with Feedback – Characteristics of Negative Feedback Amplifiers – Input Resistance – Output Resistance – E Feedback on Amplifier Bandwidth- Method of Analysis of Feedback Amplifier – Voltage Series Feedback Pair – Current Series Feedback – Current Shunt Feedback – Voltage Feedback – Nyquist Criterion for Stability of Feedback Amplifiers.	ffe dt	ect back	of : –	
UNIT	STABILITY AND OSCILLATORS				9
II	Stability – Gain and Phase Margins – Compensation – Dominant Pole Compensation – Pole Zero-I Compensation – Compensation by Modification of the β Network – Sinusoidal Oscillators – Ph Oscillator – Resonant Circuit Oscillator – General Form of Oscillator Circuit – Wien Bridge Osc Crystal Oscillators – Frequency Stability.	as	e S	hift	
UNIT III	WAVE SHAPING AND MULTIVIBRATOR CIRCUITS Integrator and Differentiator Circuits – Diode Clippers – Clampers and Slicers – Collector Coup Emitter Coupled – Astable Multivibrator – Monostable Multivibrator – Bistable Multivibrator – Tri Methods – Schmitt Trigger Circuit.				9
UNIT	POWER CIRCUITS AND SYSTEMS				9
IV	Class Large Signal Amplifiers – Second Harmonic Distortion – Higher Order Harmonic Gener Transformer Coupled Audio Power Amplifier – Efficiency – Push-Pull Amplifiers – Class B Amp Class AB Operation – Regulated Power Supplies – Series Voltage Regulator – Monolithic Regulators Layer Diode – p-n-p-n Characteristics – Silicon Controlled Rectifier.	lif	iers	_	
UNIT	MULTISTAGE AMPLIFIERS				9
V	Classification of Amplifiers – Distortion in Amplifiers – Frequency Response of an Amplifier – Bode Step Response of an Amplifier – Bandpass of Cascaded Stages – RC Coupled Amplifier – Low Fre Response of RC Coupled Stage – Effect of an Emitter Bypass Capacitor on Low Frequency Response Frequency Response of Two Cascaded CE Transistor Stages – Multistage CE Amplifier Cascade Frequencies – Noise – Differential Amplifier.	eq at	uen Hig Hig	cy gh	
	Тс	ota	ıl		45
TEXT	300K				
1.	J. Millman and Halkias, "Integrated Electronics- Analog and Digital Circuits and Systems", Tata M Edition, 2010	M	Gra	aw 1	Hill, 2
REFE	ENCE BOOKS				
1.	Sanjay Sharma, "Electronic Principles"- S. K. Kataria and Sons, 3rd Edition, 2014.				
2.	J. Millman and A. Grabel, " <i>Micro Electronics</i> ", 2nd Edition, 2009.				
3.	A. S. Sedra and K.C. Smith, " <i>Micro Electronic Circuits</i> ", Oxford Press, 4th Edition, 1998				
5.	1. 5. State and R.S. Shinin, "Here Decerence Coronas", Oniord 11665, nil Edition, 1996.				

U15E	C403R	LINEAR INTEGRATED CIRCUITS	L T 3 0	Р 0	C 3
	E OUTCO nd of each	MES unit, the students will be able to -			
1.		nd understand the fundamental operations of Analog ICs.			
2.		alog circuits using Op-Amps.			
3.	-	he working of Signal Generators.			
4.		e working of Voltage Reference and Regulator circuits.			
5.	Analvze tł	ne operation of analog to digital and digital to analog conversion.			
UNIT		ATIONAL AMPLIFIER FUNDAMENTALS AND APPLICATIONS			9
Ι	Amplifi Amplifi Amplifi Resistiv	ier Fundamentals – The Operational Amplifier – Ideal Op Amp – Basic Op Amp Configurations – N ier – Voltage follower – Inverting Amplifier – Ideal Op Amp circuit Analysis – Summing Amplifier ier – Differentiator – Integrator– Negative Feedback – Feedback in Op Amp circuits – The Loop Gain – ve Feedback – Current to Voltage Converters – Voltage to Current Converters – Differential mentation Amplifiers.	– Differ	ence with	
UNIT II	Simplif Source- Closed	C AND DYNAMIC OP AMP LIMITATIONS. ied Op Amp Circuit Diagram – Constant Current Source-Current Mirror –Widlar Current Source–Wi - Input Bias and Offset Currents – Input Offset Voltage–Input Offset Error Compensation – Open loo Loop Response – Input and output Impedances – Internal Frequency Compensation– Externa insation. Active filters – The Transfer Function – First-Order Active Filters – Standard Second Order Responder	p respor al Frequ	nse –	9
UNIT III	Voltage Detecto Multivi	 P NONLINEAR CIRCUITS AND SIGNAL GENERATORS. e Comparators – Comparator Applications – Schmitt Trigger – Precision Rectifiers – Analog Switers – Sample-and-Hold Amplifiers – Log / Antilog Amplifiers – Signal Generators – Sine Wave brators – Astable Multivibrators – Monostable Multivibrators – Monolithic Timers(555) – 555 Timer a brator – 555 Timer as an Monostable Multivibrator – Triangular Wave Generators – Saw Tooth Wav	Generato s an Ast	ors – table	
UNIT IV	Perform Linear I Basic T	AGE REFERENCES, REGULATORS AND ANALOG MULTIPLIERS. hance Specifications – Voltage References – Band Gap Voltage References – Voltage Reference A Regulators – Protections – Monolithic Voltage Regulators – Linear Regulator Applications – Switching Copologies – Efficiency – Monolithic Switching Regulator – Voltage Mode Control – Current Mo Multiplier – Variable Transconductance Multiplier.	Regulate	ors –	9
UNIT V	Perform Ladder Approx	ND A-D CONVERTERS, PHASE LOCKED LOOP. nance Specifications – D-A Conversion Techniques – Weighted Resistor DACs – R-2R Ladders – Curren – Voltage Mode R-2R Ladder – Multiplying DAC Applications – A-D Conversion Techniques imation Converters – Flash Converters – Integrating Type Converters – Over Sampling Converters – H Monolithic PLL.	- Succes	ssive	
			Total		45
TEXT	BOOKS				
	1. Sergio l	Franco – "Design with Operational Amplifiers and Analog Integrated Circuits"-Tata Mc Graw –Hill, -3 rd E	dition,20	02.	
2	2. D.Roy	Choudhry,Shail jain –"Linear Integrated circuits"-New age Pub,4 th Edition,2010.			
REFER	RENCE BO	DOKS			
	1. S.Saliva	ahanan and V.S.Kanchana Bhaskaran-" <i>Linear Integrated circuits</i> "-Tata Mc Graw –Hill -2 rd Edition.			
1	2. Ramaka	ant A.Gayakwad," Op-Amp and Linear ICs"- Prentice Hall/Pearson Education-4 th Edition.			
	3. Gray ar	nd Meyer-"Analysis and Design of Analog integrated circuits", Wiley international ,2005			

U15EC4	404R	DIGITAL SIGNAL PROCESSING	L	Т	Р	С
			3	2	0	4
COURS	SE OUT	COMES				
		ach unit, the students will be able to -				
1.		Describe DFT, FFT and to perform its computations				
2.	Introdu	ce the design techniques for FIR digital filters				
3.	Introdu	ce the design techniques for IIR digital filters				
4.	Introdu	ce the finite word length effects in signal processing & Multirate signal processing.				
5.		be the fundamentals of digital signal processors				
		RETE FOURIER TRANSFORM AND FFT			<u> </u>	
UNIT I	Introc Radix Conve	Luction to DFT – Efficient Computation of DFT- Properties of DFT – FFT Alg -2 FFT Algorithms – Decimation in Time – Decimation in Frequency Algorithm Dution - Overlap Save Method and Overlap Add Method.				1
UNIT II	FINITE IMPULSE RESPONSE DIGITAL FILTERS Amplitude and Phase Responses of FIR Filters – Linear Phase Filters – Windowing Techniques for Design of Linear Phase FIR filters-Rectangular- Hamming- Hanning and Blackman Windows - Gibbs Phenomenon – Principle of Frequency Sampling Technique – Realization of FIR Filters- Linear and Cascade Form.				s	1
UNIT	INFI	NITE IMPULSE RESPONSE DIGITAL FILTERS				1
III	Review of Design of Analog Butterworth and Chebychev Filters – Design of IIR Digital Filters using Impulse Invariance Technique – Design of IIR Digital Filters using Bilinear Transformation – Pre Warping – Frequency Transformation in Digital Domain – Realization Cascade and Parallel Form.				n	
UNIT	FINI	FE WORD LENGTH EFFECTS and MULTI RATE SIGNAL PROCESSING				1
IV	Roune Oscill	ization Noise – Derivation for Quantization Noise Power- Comparison – Trunc ding Error – Input Quantization Error-Coefficient Quantization Error – Lin ations-Dead Band- Overflow Error-Signal Scaling – Multi Rate Signal Pro- olation and Decimation.	nit	Cycl	e	
UNIT		TAL SIGNAL PROCESSORS			-	1
V	and M	tectural Features – Von Neumann Architecture – Harvard Architecture – Bus Ar Memory – Multiplier – Shifter – MAC Unit – ALU – Addressing Modes – ation Unit – Pipelining – Overview of Instruction Set of TMS320C54XX.				-
	•			Tota	ıl	7
TEXT H	BOOKS					
1.	John (G Proakis- Dimtris G Manolakis," <i>Digital Signal Processing Principles-Algorithms cation</i> ", Pearson/PHI, 4th Edition, 2007	and	l		
2	B.Ver TMH	kataramani & M-Bhaskar, "Digital Signal Processor Architecture- Programming of 2003	and	Appl	icat	ion'
REFER	ENCE	BOOKS				
1.	P.Ran	nesh Babu, "Digital Signal Processing", Scitech, 2016.				
2.		litra, "Digital Signal Processing- A Computer based approach", Tata McGraw-Hil	1, 20	06.		
3.	S.Sali	vahanan, A.Vallavaraj, Gnanapriya, "Digital Signal processing", McGraw Hill / T	MH	, 201	5.	
4.	Allan	V.Openheim, Ronald W.Sehafer & John R.Buck, "Discrete Time Signal Pro nPearson, Prentice Hall.				con

U15EC4	405R ANALOG COMMUNICATION SYSTEMS		,]			
		3	()	0	3
	<u>E OUTCOMES</u>					
	nd of each unit, the students will be able to -					
1.	Describe the generation and detection methods of various AM systems.					
2.	Explain the transmission and demodulation methods of FM systems.					
3.	Analyze the noise performance of various analog modulation systems					
4.	Illustrate the effect of noise and their various types.					
5.	Evaluate the basic information theory with source coding theorem.					
UNIT I	AMPLITUDE MODULATION SYSTEMS Principles of Amplitude Modulation – Mathematical Expression for Single T Relations in AM – Types of AM – DSBSC-SSBSC and VSB – Generati Methods – Comparison of Various AM Systems – AM transmitters - Low Lev Modulation – AM Super-heterodyne Radio Receiver.	on and De	tect	ion		9
UNIT	ANGLE MODULATION SYSTEMS Phase and Frequency Modulation – Principles of FM – Expression for Si	ngle Tone	FM	1 _		9
Π	Frequency Analysis of FM – Transmission Bandwidth of FM – Expression for Single Tone FM – Frequency Analysis of FM – Transmission Bandwidth of FM – NBFM and WBFM Generation Methods – Direct Method and Indirect (Armstrong) Method of FM Generation –FM Demodulators – FM Transmitters and Receivers.				L	
UNIT III						9
UNIT IV	PERFORMANCE OF CW MODULATION SYSTEMS Channel SNR – Output SNR – Figure of Merit – Noise in DSBSC and SSB Coherent Detection – Noise in AM System using Envelope Detection – N Analysis in FM System – FM Threshold Effect – Threshold Improvement in Pre-Emphasis and De-Emphasis in FM – Noise Performance Compariso Modulation Systems.	loise Perfor Discrimin	rma ator	nce s –	-	9
UNIT	INFORMATION THEORY AND CODING				+	9
V	Amount of Information – Entropy – Information Rate – Source Coding to Information Per Bit – Shannon-Fano Coding – Huffman Coding – BEC – Theorem – Channel Capacity – Bandwidth – SNR Trade-Off – Mutual Informa	BSC – Sha		-		7
			Т	otal		45
TEXT E	BOOKS				_1	
1.	Simon Haykins, "Communication Systems", John Wiley & Sons, 4th Edition, 20)16.				
2.	R.P. Singh and S.D. Sapre, " <i>Communication Systems–Analog and Digital</i> ", Tat 3 rd Edition, 2014.	a McGrawF	Hill,			
REFER	ENCE BOOKS					
3.	Wayne Tomasi, "Electronic Communication Systems", 5/e, Pearson Education, 2	2011.				
4.	H.Taub, D L Schilling, G Saha, "Principles of Communication", 3/e, 2011.					
5.	Dr. Sanjay Sharma, "Analog Communication systems", S.K. Kataria & sons, 6th	dition, 201	3.			

U15EC406	R LINEAR INTEGRATED CIRCUITS LABORATORY	L	Т	Р	С	
		0	0	2	1	
COURSE O	DUTCOMES					
At the end	of each unit, the students will be able to					
	form mathematical operations using IC 741 Op-amp					
	nerate different types of waveforms using Op amp					
	sign analog filters using Op-amp					
	sign monostable and Astable multivibrators using IC 555.					
	sign voltage regulators using IC 723					
Exp. No.	List of Experiments:					
1.	Design of Inverting and Non-Inverting amplifier using Opamp (]	IC 7	41)			
2.	Design of Integrator and Differentiator using Opamp (IC 741)					
3.	Design of Differential amplifier to find CMRR using Opamp (IC	274	1).			
4.	Design of Astable and Monostable multivibrator using Opamp 10	C 74	-1			
5.	Design of Schmitt trigger using Opamp (IC 741)					
6.	Design of Low pass and High pass filters using Opamp (IC 741)					
7.	Design of Band pass filters using Opamp (IC 741)					
8.	Design of RC phase shift and Wein bridge oscillators using Opan	np(]	[C 74	41)		
9.	Design of Monostable and Astable multivibrators using IC 555					
10.	Design of high voltage regulator using IC 723.					
11.	Design of low voltage regulator using IC 723					

Total: 30 Hours

U15EC	C407R	ELECTRONIC CIRCUITS AND SIMULATION LABORATORY	L 0	Т 0	P 2	C 1		
COUR	SE OUT	COMES						
At the	end of ea	ch unit, the students will be able to						
1	Measure	e the frequency response of a given amplifiers.						
2	•	ize and evaluate single stage and two stage amplifiers						
3		the given performance using feedback amplifiers						
4	U	and test oscillator circuits using BJT.						
5		e the performance of the amplifiers and oscillators using PSPICE and C-language						
Exp. No	D. List of 1	Experiments						
1		and analyze the frequency response of a two stage BJT amplifier with frequency as an is 500 KHz and plot the frequency Vs gain graph for the given transistor.	nput in t	ne ra	nge	of		
2		and analyze the frequency response of a differential amplifier in common mode and difference user Vs gain graph for the given pair of transistors.	ential mo	de ai	nd p	lot		
3		and analyze the frequency response of a voltage shunt feedback amplifier and plot the frequency response of a voltage shunt feedback amplifier and plot the frequency iven transistor.	lency Vs	gain	ı gra	ıph		
4		and analyze the frequency response of a current series feedback amplifier and plot the frequency response of a current series feedback amplifier and plot the frequency iven transistor.	lency Vs	gair	ı gra	ıph		
5	Design output.	the RC phase shift oscillator to oscillate at 1 KHz which gives 600 phase shift at each RC	network a	ind p	lot	the		
6	Design	the Wien bridge oscillator to oscillate at 1.5 KHz which gives 00 phase shift and plot the ou	tput.					
7	Design	the LC oscillator (Hartley and Colpitts) to obtain 5 KHz output and plot the graph for the same	me outpu	t.				
8	Design	Astable, Monostable and Bistable multivibrators.						
9	Design	Design and analyze Class A amplifier and plot the output response.						
10		e the given circuits using PSPICE and verify the output: i) RC phase shift oscillators ii) Ha s oscillators iv) Astable, Monostable and Bistable multivibrators v) Characteristics of SCR		illato	ors	iii)		

Total: 30 Hours

U15EC40	8R DIGITAL SIGNAL PROCESSING LABORATORY		T 0	P 2	C 1
	OUTCOMES	U	U	-	-
	d of each experiment, the students will be able to				
1. G	Generate different types of signals using MATLAB and DSP Processor				
	erform convolution and sampling using MATLAB and DSP Processor				
	Design FIR and IIR filters using MATLAB and DSP Processor				
	Perform DFT and FFT operation using MATLAB and DSP Processor Perform arithmetic operations using DSP Processor				
Exp.	List of Experiments				
No.					
	Using MATLAB				
1.	Generation of Discrete time signals				
2.	Linear and Circular convolution				
3.	Auto and Cross Correlation				
4.	Sampling and effect of Aliasing				
5.	Design of FIR Filters				
6.	Design of IIR Filters				
7.	DFT and FFT				
8.	Up sampling and Down sampling				
	Using TMS320C54 Processor				
9.	Arithmetic operations				
10.	Sampling of input signal and display				
11.	Implementation of FIR Filters				
12.	Implementation of IIR Filters				
13.	Linear convolution				
14.	Generation of Signals				
15.	Calculation of FFT				

Total: 30 Hours

Semester – IV	U15 GE 401R: SOFT SKILLS AND APTITUDE – II L T P C Marks 0 0 2 1 100
Course Outcomes	
At the end of the co	urse the student will be able to:
1. Demonstrate cap	abilities in additional soft-skill areas using hands-on and/or case-study approaches
2. Solve problems of	of increasing difficulty than those in SSA-I* in given areas of quantitative aptitud ning and score 65-70% marks in company-specific internal tests
3. Demonstrate grea	ater than SSA-I level of verbal aptitude skills in English with regard to given topic 6 marks in company-specific internal tests
	Demonstrating soft-skill capabilities with reference to the following
	topics:
	a. SWOT b. Goal setting
1. Soft Skills	c. Time management
I. SUIT SKIIIS	d. Stress management
	e. Interpersonal skills and Intrapersonal skills
	f. Presentation skills
	g. Group discussions
	Solving problems with reference to the following topics:
	a. Allegation and mixture
	b. Time, speed and distance: Unit conversion, Average speed, Relativ
	speed, two objects crossing each other in the same direction an
2. Quantitative Apt	
and	c. Clocks
Logical Reasonin	g d. Calendars
	e. Blood relations
	f. Cubes and Dices
	g. Syllogism (≤3 statements) h. Ranking and order
	i. Company specific aptitude questions
	Demonstrating English language skills with reference to the following
	 topics:
	a. Critical reasoning
	b. Theme detection
3. Verbal Aptitude	c. Verbal analogy
	d. Prepositions
	e. Articles
	f. Cloze test
	g. Company specific aptitude questions

Dr.S.Anita

Department of Placement Training Sona Colloge of Technology, Salem-636 005.

2

Sona College of Technology, Salem

(An Autonomous Institution)

Courses of Study for B.E/B.Tech. Semester V under Regulations 2015R (CBCS)

Branch: Electronics and Communication Engineering

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit
	I	Theory		I		
1	U15EC501R	Digital Communication	3	0	0	3
2	U15EC502R	Transmission Lines and Waveguides	2	2	0	3
3	U15EC503R	Microprocessors and Microcontroller	3	0	0	3
4	U15CS507R	Data Structures and Object Oriented Programming in C++	2	0	2	3
5	U15EC504R	Control Systems	2	2	0	3
6	U15EC505R	VLSI Design	3	0	0	3
		Practical		I		
7	U15EC506R	Microprocessors and Microcontroller Laboratory	0	0	2	1
8	U15EC507R	VLSI Laboratory	0	0	2	1
9	U15EC508R	Communication Laboratory	0	0	2	1
10	U15GE501R	Soft Skills and Aptitude - III	0	0	2	1
Total Credits						

Approved By

Chairperson, Electronics and Communication Engineering BoSMember Secretary, Academic CouncilChairperson, Academic Council & PrincipalDr.R.S.SabeenianDr.R.ShivakumarDr.S.R.R.Senthil Kumar

Copy to:-

HOD/Electronics and Communication Engineering, Fifth Semester BE ECE Students and Staff, COE

U15EC	501R	DIGITAL COMMUNICATION L T F 3 0 0	• C 3
COURS	E OUTCOMES		
At the e	nd of each unit, t	the students will be able to -	
1.		pling process and different types of digital pulse modulation techniques.	
2.		eband pulse transmission and ISI and to construct the duo-binary coding.	
3.	Compare the per-	formance of various digital modulation systems for the pass-band data transmission	
4.		ent types of error control coding techniques.	
5.	Illustrate the met	hods of spread spectrum modulation and its performance parameters.	
UNIT	PULSE MODU	ULATION	
Ι		ess - Signal Distortion and Recovery - PAM - PWM - PPM - Pulse Code	
		Noise Considerations in PCM Systems - Delta Modulation - Differential Pulse	9
	Code Modulatio	on – Adaptive DPCM – Adaptive DM – TDM - Digital Multiplexers.	
UNIT	BASEBAND P	PULSE TRANSMISSION	
II		- Error Rate Due to Noise - Line Coding Formats - Inter -Symbol Interference -	
		erion for Distortion Less Base Band Binary Transmission - Correlative Level	9
		Band M- ary PAM – Adaptive Equalization – Eye Patterns.	
UNIT		DATA TRANSMISSION	
Ш		Pass Band Transmission Model – Generation and Detection – Signal Space	
	-	Error Probability – Power Spectra of ASK- FSK- PSK – DPSK – QAM - QPSK	9
	and MSK Scher	mes – Comparison of Digital Modulation Systems using a Single Carrier – Carrier	
UNIT		TROL CODING	-
IV			
1 V		Codes – Cyclic Codes – Generator Polynomial – Encoder for Cyclic Codes – Codes – Time Domain and Transform Domain Approach – Maximum Likelihood	
		onvolutional Codes – Viterbi Algorithm.	9
LINIT	-	CTRUM MODULATION	
UNIT V		Sequences – Properties of Maximum Length Sequence – Direct Sequence Spread	
•		Coherent BPSK– Processing Gain –Probability of Error – Jamming Margin –	
	-	op Spread Spectrum – Gold Codes.	9
		Total	: 45
TEXT E	BOOKS		
1.		"Digital Communications", Wiley India Pvt.Ltd, 2015.	
REFER	ENCE BOOKS		
1.		s, "Digital Communication" 5th Edition, McGraw Hill, 2014	
2.	Press, 2017.	hi Ding, 'Modern Digital and Analog Communication Systems", Oxford Unive	•
3.	Taub and Schil	ling, "Principles of Digital Communication", 4th edition, Tata McGraw-Hill, 2013.	
4.	Saniay Sharma	"Digital Communication," 6th edition, S.K.Kataria & son's publication, 2014.	

TRANSMISSION LINES AND WAVEGUIDES

		2	2	0	3	
COURS	E OUTCOMES					
At the e	nd of each unit, the students will be able to -					
1.	Analyse electromagnetic wave propagation in generic transmission line geometries.					
2.	Design impedance matching transmission line and calculate the reflection coefficient, S	WR,	using	g sn	nith	
	chart.					
3.	Analyze guided waves and their field pattern between parallel planes of perfect	cond	lucto	ors.		
4.	Design and measure the various propagating modes of rectangular wave guides					
5.	Derive the field equation of circular waveguides and resonators.					
UNIT	TRANSMISSION LINE THEORY				12	
Ι	Different Types of Transmission Lines – Characteristic Impedance – Propagation Con					
	\prod Section Equivalent to Lines – General Solution of the Transmission Line – Standard					
	Voltage and Current of a Line Terminated by an Impedance – Physical Significa					
	Equation and the Infinite Line – Standard Forms for the Input Impedance of a Transm Terminated by an Impedance – Reflection Coefficient – Wavelength and Velocity of I					
	- Waveform Distortion – Distortion Less Transmission Line – The Telephone Ca					
	Loading - Campbell's Equation - Input Impedance of Lossless Lines – Reflection on					
	Terminated By Z_0 – Transfer Impedance – Reflection Factor and Reflection Loss – Ins					
UNIT	TRANSMISSION LINE AT RADIO FREQUENCIES			~~~	12	
II	Standing Waves and Standing Wave Ratio on a Line – One Eighth Wave Line – T	The C)uart	er	14	
11	Wave Line and Impedance Matching - The Half Wave Line - The Circle Diagr					
	Dissipation Less Line - The Smith Chart - Application of the Smith Chart - Conve	ersior	n fro	m		
	Impedance to Reflection Coefficient and Vice -Versa - Impedance to Admittance Con					
	Vice-Versa - Input Impedance of a Lossless Line Terminated by Impedance - S	Single	e St	ub		
	Matching and Double Stub Matching.					
UNIT	GUIDED WAVES BETWEEN PARALLEL PLANES	-			12	
III	Waves Between Parallel Planes of Perfect Conductors – Transverse Electric and					
	Magnetic Waves – Characteristics of TE And TM Waves – Transverse Electromagnet Velocities of Propagation – Component Uniform Plane Waves Between Paralle					
	Attenuation of TE And TM Waves of Parallel Plane Guides – Wave Impedances.	I FIA	nes	_		
UNIT	RECTANGULAR WAVEGUIDES				12	
IV	Transverse Magnetic Waves in Rectangular Waveguides – Transverse Electric	Way	ves	in	14	
1 V	Rectangular Waveguides - Characteristic of TE And TM Waves - Cutoff Wavelength					
	Velocity - Impossibility of TEM Waves in Waveguides - Dominant Mode in I					
	Waveguide - Attenuation of TE And TM Modes in Rectangular Waveguides - Wave	Imped	lanc	es		
	- Characteristic Impedance - Excitation of Modes.					
UNIT	CIRCULAR WAVE GUIDES AND RESONATORS				12	
\mathbf{V}	Bessel Functions – Solution of Field Equations in Cylindrical Co-Ordinates – TM and					
	in Circular Guides – Wave Impedances and Characteristic Impedance – Dominan Circular Wayaguida – Excitation of Modes – Microwysky Cavities – Postarge					
	Circular Waveguide – Excitation of Modes – Microwave Cavities – Rectange Pasonators – Circular Cavity Pasonator – O Easter of a Cavity Pasonator for TE – M		Cavi	ty		
	Resonators – Circular Cavity Resonator – Q Factor of a Cavity Resonator for TE_{101} Me	Jue.	Т	ntal	: 60	
	OOK S		10	rai	. 00	
TEXT B						
1.	J.D.Ryder, "Networks, Lines and Fields", 2e, Pearson, 2015					
2.	E.C. Jordan and K.G.Balmain, "Electro Magnetic Waves and Radiating System", 2e,P	earso	n, 20	015.		
	ENCE BOOKS					
<u>1.</u>	David M.Pozar, " <i>Microwave Engineering</i> ", 4 th Edition, John Wiley, 2013.					
2.	Ramo, Whineery and Van Duzer, "Fields and Waves in Communication Electronics",	3e Ic	hn V	Nile	v	
2.	2011.	50,50			· J ,	
3.	R.S. Sabeenian, "Transmission Line and Waveguides", Sonaversity.					
4.	G.S.Raju, "Electromagnetic Field Theory and Transmission Lines", 3/e, Pearson Educ	ation	Ind	ia.		
	2012.			,		

U15EC5	503R	MICROPROCESSORS AND MICROCONTROLLER	L	Т	Р	С	
			3	0	0	3	
COURS	E OUTCOMES						
At the e	nd of each unit, t	he students will be able to -					
1.	Develop assembl microprocessors.	y language program to solve mathematical problems using 8bit and 1	6 bit				
2.	Create a multipro	ocessor system with 8086 microprocessor.					
3.		memory devices with 8086 microprocessor.					
		tecture and signals of 8051 microcontroller. ne system using 8051 microcontroller.					
UNIT	-	BIT MICROPROCESSORS					
Ι	8085 Microproc Programming.	essor Architecture – Instruction Set – Addressing Modes – Assemb	•	-	-		
UNIT	MULTIPROC	ESSOR CONFIGURATION				ç	
Π	Introduction to Assembler Directives – Stacks – Procedures – Macros – Interrupts and Interrupt Service Routines – Multiprocessor Configurations – Coprocessor – Closely Coupled and Loosely Coupled Configurations.						
UNIT	INTERFACIN	G WITH 8086µР				ç	
Π	Memory Interfacing and I/O Interfacing – Parallel Communication Interface – Serial Communication Interface – D/A and A/D Interface – Timer – Keyboard /Display Controller – Interrupt Controller – DMA Controller – Programming and Applications.						
UNIT	8051 MICROC	CONTROLLER				ļ	
IV	(SFRs) - I/O Pi	Evolution of Microcontroller - Architecture of 8051 – Special Functions Ports and Circuits - Instruction Set - Addressing Modes - Assemb RS232 Bus – Inter Integrated Circuit.		-			
UNIT	INTERFACIN	G WITH MICROCONTROLLER				9	
V	Keyboard Inter	051 Timers – Serial Port Programming – Interrupts Programming facing – ADC- DAC and Sensor Interfacing – External Memory und Waveform generation.					
				Т	otal	: 45	
TEXT B	BOOKS						
1.	Douglas V Hall, McGrawHill Co	"Microprocessor and Interfacing : Programming and Interfacing", I mpanies, ,2012.	Editio	n-37	lata		
2.		r Mandal, "Microprocessors and Microcontrollers, Architecture, Prog 8085, 8086 and 8051", McGrawHill Companies,2012.	gram	ming	; and	l	
REFER	ENCE BOOKS						
1.	McGraw Hill In	K.M.Burchandi, "Intel Microprocessors Architecture Programming ternational Edition, 2006.					
2.	3,Penram Intern	a, "The 8051 Microcontroller Architecture Programming and Apple ational Publishers (India), New Delhi, 2007,.					
3.	Edition, Penram	 Ramesh S Gaonkar, "Microprocessor Architecture, Programming and application with 8085", 4th Edition, Penram International Publishing, New Delhi, 2002. M. Rafi Quazzaman, "Microprocessors Theory and Applications: Intel and Motorola", Prentice Hall 					
5.	of India, Pvt. Lt	d., New Delhi, 2003. i Mazidi and Janice Gillispie Mazidi, <i>"The 8051 Microcontrolle.</i>					
		on-2, Pearson Education Asia, New Delhi, 2008.					

DATA STRUCTURES AND OBJECT ORIENTED **PROGRAMMING IN C++**

	PROGRAMINING IN C++	,
COURSE	E OUTCOMES	
At the en	d of each unit, the students will be able to -	
1. U	Understand the basic concepts of object oriented programming.	
2. I	Design program for real time applications using inheritance and polymorphism.	
	Apply various linear tree data structures in real time applications.	
	implement the operations of tree traversals and hashing techniques	
5. I	Develop and apply algorithms for real time applications using graphs	
UNIT	PRINCIPLES OF OOP	9
Ι	Basic Concepts of Object Oriented Programming – Expressions – Control Structures – Functions – Classes and Objects – Class Members – Access Control – Pointers – Constructors and Destructors – Parameter Passing Methods – Inline Functions – Static Class Members – This Pointer –Friend Functions – Dynamic Memory Allocation (new and delete).	
UNIT	INHERITANCE AND POLYMORPHISM 9	9
Π	Inheritance Basics – Types of Inheritance – Base Class Access Control –Compile Time Polymorphism –Runtime Polymorphism using Virtual Functions – Abstract Class –Exception Handling.	
UNIT	DATA STRUCTURES	9
III	Basic Data Structures – Abstract Data Type – Linear Data Structures – List ADT – Single – Double and Circular – Stack ADT – Queue ADT.	
UNIT	TREES AND GRAPHS	9
IV	Basic Terminologies – Tree Traversals – Binary Trees – Binary Search Tree ADT – Graph Traversals –Shortest Path Algorithm – Dijkstra's Algorithm – Minimum Spanning Tree – Prim's Algorithm – Kruskal's Algorithm.	
UNIT	SEARCHING TECHNIQUES	9
V	Searching Techniques – Linear Search – Binary Search – Sorting Techniques – Insertion – Bubble and Merge Sort.	
	Total	45
TEXT B	OOKS	
1.	Mark Allen Weiss, "Data structures and Algorithms Analysis in C++", 4 th Edition, Prentice Hall, 2013.	
2.	E. Balagurusamy, "Object-Oriented Programming With C++", 3 rd Edition, Tata McGraw Hill, 2006.	
REFERE	ENCE BOOKS	
1.	Adam Drozdek, "Data structures and algorithms in $C++$ ", 3 rd Edition, Cengage Learning, 2013.	
2.	Langsam, Augenstein and Tanenbaum "Data structures using C and $C++$ ", 2nd Edition, Prentice Hall of India, 1998.	
3.	Micheal T. Goodrich, Roberto Tamassia, David Mount, " <i>Data Structures and Algorithms in C++</i> ", Wiley Student edition, John Wiley and Sons, 2009.	

U15EC	504R	CONTROL SYSTEMS		L 2	T 2	Р 0	C 3
COURS	SE OUTCOMES			-	-	•	
_		e students will be able to -					
1.		function of a given system using mathematic	al models.				
2.		e response of systems and analyze the steady s					
3.		ency domain specifications using frequency r					
4.		lyze the stability of given system.	1 1				
5.		ations using state space model and obtain the	Controllability and				
	Observability of	0 1	,				
UNIT		PTS AND SYSTEM REPRESENTATION					12
I	Introduction - (en Loop and Closed Loop Systems - Mathen	natical Model of Contro	1 Sys	tems	-	
-		ns - Mechanical Translational System - Mech		-			
		- Signal Flow Graph - Mason's Gain Formula					
UNIT		SE ANALYSIS					12
П	Time Response	Standard Test Signals - Type and Order of C	Control System - Time F	Respo	nse o	f	
		m for Unit Step - Unit Ramp and Impulse					
	•	Unit Step Input - Time Domain Specification					
	•	Controllers – P - PI and PID.	·				
UNIT	FREQUENCY	RESPONSE ANALYSIS					12
Ш	Frequency Res	nse - Frequency Domain Specifications - Res	sonant Peak - Resonant	Freq	uenc	у	
	- Bandwidth- C	-Off Rate - Gain Margin and Phase Margin -	Frequency Response P	lots -	Pola	r	
	Plot - Bode Plo	M and N Circles - Nichol's Chart.					
UNIT	STABILITY A	ALYSIS					12
IV	The Concepts	Stability - Necessary Conditions for Stab	ility - Relative Stabili	ty -	Rout	h	
	Hurwitz Stabili	Criterion - Root Locus - Effect of Addition	n of Poles - Effect of A	Addit	ion o	f	
		tability Criterion.					
UNIT	COMPENSAT	RS AND STATE SPACE ANALYSIS					12
V	Compensators	ntroduction - Types - Lag - Lead and Lag-Le	ad Design using Bode F	lots.			
		alysis: Concepts of State - State Variab			Linea	r	
	Continuous Tir	Systems - Controllability and Observability.					
					To	tal:	60
TEXT E	BOOKS					-	
		"Control Systems Theory and Applications",	2 nd New Edition Pears	on n	ublic	atio	me
1.	2017.	control systems theory and apprealions,	2 new Lonion, reals	on h	.0110	at 10	
2		M.Gopal, "Control Systems Engineering",	5 th Edition New Age	Interr	ation	121	(P)
2.	Ltd,Publishers,		5 Lution, New Age 1		at 101	u	(1)
DEFE		,,,,					
	ENCE BOOKS			<u>г. т</u>	. 11 .	20	1.4
1.	M.Gopal, Con	ol Systems, Principles and Design", 4 th Edition	on, 1 ata McGraw Hill, N	iew L	eini,	20	14.
2.	A.Nagoorkanı,	Control Systems Engineering", 3 rd Edition, RH	SA Publications, 2017.				
3.	S.Palani, "Cont	<i>l Systems Engineering</i> ", 3 rd Edition, Tata Mc	Graw Hill, 2015.				

U15EC5	505R	VLSI DESIGN	L 3	Т 0	P 0	C 3
COURS	E OUTC	COMES				
At the e	nd of eac	h unit, the students will be able to -				
1.	Design V	HDL code for combinational circuits and sequential circuits				
2.	Analyze	MOS and CMOS transistor characteristics				
3.	Illustrate	the fabrication processes of CMOS				
4.	Design C	MOS combinational circuit.				
		equential circuits and test CMOS circuits.				
UNIT	VHDL					11
Ι	Declara Modelli	Introduction to VHDL – Tutorial – Entity Declaration – Architecture Body – Configuration Declaration – Package Declaration – Package Body – Identifiers – Operators – Behavioral Modelling – Process Statement – Wait Statement – If Statement – Loop Statement – Data Flow Modelling – Structural Modelling – Component Declaration – Component Instantiation.				
UNIT	MOS T	RANSISTOR THEORY				9
Π	Compose -Long	Introduction – MOS Transistors – CMOS Logic – Inverter – NAND gate – CMOS Logic Gates – Compound - MOS Transistor Theory – MOS Structure - nMOS and pMOS Transistor Operation –Long Channel V-I Characteristics – C-V Characteristics – Nonideal I-V Effects – DC Transfer Characteristics CMOS Inveter.				
UNIT	CMOS	PROCESSING TECHNOLOGY				9
Ш	Formati Contact Twin W	ction – CMOS Technologies – Wafer Formation – Photolithography – Well a ion – Silicon Dioxide –Isolation – Gate Oxide – Gate and Source/Drain Fo is and Metallization – Passivation– nMOS Fabrication – n-well Process – p-we Vell Process - Layout Design Rules – CMOS Process Enhancement - Stick C – CMOS NAND – CMOS NOR.	orma 11 Pr	tion: oces	s – s –	
UNIT	СОМВ	INATIONAL CIRCUIT DESIGN				8
IV	Static C Logic –	CMOS – Ratioed Circuits – Cascode Voltage Switch Logic – Dynamic Circuits Dual-Rail Domino Logic – Pass-Transistor Circuits – CMOS with Transmiss of Power Dissiption.				Ū
UNIT	CMOS	TESTING				8
V		ction – Testers – Text Fixtures and Test Programs – Logic Verification I Debug Principles – Manufacturing Test – Design for Testability – Boundary So		ciple	s -	
				To	tal	45
TEXT B	BOOKS					·
1.		E Weste and David Money Harris, "CMOS VLSI Design a circuits and systems ion, Pearson, 2015.	s per	rspec	tive	2
2.	J. Bhask	ker, "A VHDL Primer", Pearson Education, 3 rd edition, 2015.	_	_	_	_
REFER	ENCE B					
1.	perspect	Rabaey, Anantha Chandrakasan ,Borivoje Nikolic, "Digital Integrated C tive", Pearson Education, 2 nd edition, 2016.				C
2.	2018.	H. Roth, Jr., Lizy Kurian John,"Digital System Design using VHDL", Cens	gage	, 3 rd	edit	ion,
3.	Pucknel	ll D.A and Eshraghian K., "Basic VLSI Design", Third Edition, PHI, 2003.				

MICROPROCESSORS AND MICROCONTROLLER LABORATORY

	LADORATORI	U	U	4 I
	OUTCOMES			
	of each unit, the students will be able to -			
	rite the assembly language programs to perform various arithmetic and logical operati	ons u	sing	
	icroprocessors. terface various peripheral ICs' and I/O devices with 8086 microprocessor.			
	Trite the assembly language programs to generate time delay and to establish the data	comr	nunic	ations
	sing 8051 microcontroller.	20111	liuiiio	utions
Exp. No.	List of Experiments			
1	Study of 8085, 8086 and 8051 Trainer Kits.			
2	8- bit Addition and Subtraction using 8085µP.			
3	16-bit Manipulation (addition and subtraction) 8085µP.			
4	8-bit Multiplication and Division 8085µP.			
5	16-bit Multiplication and Division 8085µP.			
6	Code Conversion 8085µP.			
7	16 – bit Addition and Subtraction using 8086µP.			
8	16 - bit Multiplication and Division using 8086μP.			
9	String Manipulation using 8086µP.			
10	Array Manipulation using 8086μP.			
11	Experiments with 8255 in Mode 0 using 8086µP.			
12	8279 Keyboard/Display Interface with the 8086µP.			
13	Timer Interface 8253 with the 8086µP.			
14	Stepper Motor Interface 8086µP.			
15	8-bit Manipulations using 8051 Microcontroller.			
16	16-bit Manipulations using 8051 Microcontroller.			
17	Array Operations-Sum of N Elements using 8051 Microcontroller			
18	Generation of Time Delay using 8051 Microcontroller.			
19	Data Communications using Parallel and Serial Ports.			
	· · · · · · · · · · · · · · · · · · ·			

Total Hours: 30

U15EC507	'R	VLSI LABORATORY	L		Р	-
			0	0	2	1
COURSE O	OUTCOME					
At the end o	of experime	ents, the students will be able to -				
1. D	Design and s	simulation of Combinational logic circuits and Sequential logic circuits using	, VH	DL		
2. D	Design CM	OS circuit using SPICE				
3. F	PGA Imple	ementation				
Exp. No.	List of Ex	speriments				
	Design an	nd Implementation of Combinational logic circuits using VHDL				
1.	Adder and	l Subtractor				
2.	Multiplex	er and Demultiplexer				
3.	Encoder a	nd Decoder				
4.	Comparate	or				
	Design an	nd Implementation of Sequential logic circuits using VHDL				
5.	Flipflops					
6.	Ripple Co	unter				
7.	Synchrono	ous Counter				
8.	Shift Regi	ster				
9.		Detector using FSM				
	Design Cl	MOS circuits				
10.	CMOS In	verter				
11.	Logic Gat	es				
		plementation				
12.	4 bit Adde	er				
13.	4 bit Mult	iplier				
14.	Traffic Lig	ght Controller				

Total Hours: 30

U15EC508	R COMMUNICATION LABORATORY	L	Т	Р	č					
		0	0	2	1					
COURSE	DUTCOMES									
	of each experiment, the students will be able to -									
	esign and construct signal generator and demodulator for AM and FM									
	onstruct the sampling process of a signal and its recovery using the sampled version. enerate and detect the signals using analog and digital pulse modulation techniques.									
Exp. No.	List of Experiments									
1	Amplitude Modulation and Demodulation.									
2	Frequency Modulation and Demodulation.									
3	Characteristics of AM Receiver (Selectivity and Sensitivity).									
4	Sampling of an Analog Signal and Reconstruction.									
5	Pulse Modulation Techniques - PAM, PWM, PPM.									
6	Study of Line Coding Formats and Decoding.									
7	Time Division Multiplexing using PAM.									
8	Pulse Code Modulation.									
9	Delta Modulation and Demodulation.									
10	Differential Pulse Code Modulation.									
11	Digital Modulation -ASK, FSK, PSK, QPSK.									
12	Analysis of Filters using Network Analyzer.									
13	RF Signal Analysis using Spectrum Analyzer.									

Total Hours: 30

Semester –V	U15 GE 501R:SOFT SKILLS AND APTITUDE - III 0 0 2 1 10	rks)0											
Course Outcome	S	-											
At the end of the	course the student will be able to:												
1. Demonstrate of using hands-or	apabilities in supplementary areas of soft-skills and job-related selection proce and/or case-study approaches	sse											
2. Solve problem	s of advanced levels than those in SSA-II in specified areas of quantitative aptir soning and score 70-75% marks in company-specific internal tests	ud											
3. Demonstrate g	greater than SSA-II level of verbal aptitude skills in English with regard to greater 70-75% marks in company-specific internal tests	ve											
I	Demonstrating soft-skill capabilities with reference to the												
	following topics:												
	tonoring topics.												
	a. Career planning												
1.Soft Skills	b. Resume writing												
1.SUIT SKIIIS	c. Group discussion												
	d. Teamwork												
	e. Leadership skills												
	f. Interview skills g. Mock interview												
	h. Mock GDs												
	Solving problems with reference to the following topics :												
	a. Numbers: Remainder concept												
	b. Time and work: Fraction technique, Efficiency technique, P	ine											
	and cisterns and Chain rule	pe											
2.Quantitative Ap													
	d. Compound interest												
and	e. Set theory: Venn diagram												
Logical Reasonin	f. Puzzles												
Logical Reasonin	g. Mathematical operators												
	h. Syllogism (≥4 Statements)												
	i. Data sufficiency												
		j. Statement and assumptions											
	 Company specific aptitude questions 	k. Statement and conclusions											
	Demonstrating English language skills with reference to the												
	following topics:												
	a. Subject verb agreement												
3. Verbal Aptitud	e b. Selecting the best alternative for the stated parts of given sentences												
	c. Reading comprehension												
	d. Contextual synonyms												
	e. Sentence fillers												
	f. Writing a story for a given picture												
	g. Company specific aptitude questions												

S. Aut **Department of Placement Training**

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E/B.Tech. Semester VI under Regulations 2015R (CBCS) Branch: Electronics and Communication Engineering

S. No	Course Code		Course Title	Lecture	Tutorial	Practical	Credit
			Theory			I	1
1.	U15EC601R	Antenna and Wave	Propagation	3	0	0	3
2.	U15EC602R	Digital Image Proce	essing	3	0	0	3
3.	U15EC603R	Embedded Systems		3	0	0	3
4.	U15EC902R		Wireless Communication				
5.	U15EC916R	Professional	Measurement and Instrumentation	3	0	0	0.1
6.	U15EC928R	Elective -	Sensors and IOT				3*
7.	U15EC926R		Machine Learning and Its Applications	2	0	2	
8.	noc21-cs16		Cryptography and Network Security	- 3			
9.	noc21-cs24	Professional	Introduction to Machine Learning		0	0	3*
10.	noc21-ee32	 Elective - NPTEL Course 	Sensors and Actuators		0	0	5**
11.	noc21-cs45		Data Analytics with Python				
12.	U15CS1003R		Internet of Things				
13.	U15CS1006R		Data Science	2	0	0	2
14.	U15IT1004R		Python Programming	3	0	0	3
15.	U15IT1003R	Open Elective	Problem Solving Techniques Using Java Programming				
16.	U15IT1005R		Introduction To Database Technology				
17.	U15CS1004R	1	Mobile Application Development				
18.	U15FT1001R	7	Fundamentals of Fashion Design				
19.	U15CE1004R		Municipal Solid Waste Management				

	Practical									
20.	U15EC604R	Digital Image Processing Laboratory	0	0	2	1				
21.	U15EC605R	Embedded Systems Laboratory	0	0	2	1				
22.	U15CS606R	Data Structures and Object Oriented Programming in C++ Laboratory	0	0	2	1				
23.	U15GE601BR	Soft Skills and Aptitude - IV	0	0	2	1				
					Total Credits	22				

*Any 1 elective to be opted by a student among 4 electives.

Approved By

Chairperson, Electronics and Communication Engineering BoSMember Secretary, Academic CouncilChairperson, Academic Council & PrincipalDr.R.S.SabeenianDr.R.ShivakumarDr.S.R.R.Senthil Kumar

Copy to:-

HOD/Electronics and Communication Engineering, Sixth Semester BE ECE Students and Staff, COE

U15EC6	01R		Т	Р	С						
		3	0	0	3						
	E OUTCOMES										
		ne students will be able to -									
		nna fundamentals and Radiation pattern.									
		Ferent parameters of antenna arrays. ve antennas for the given specifications.									
		erent measurement techniques of antenna parameters and special antennas.									
		ospheric and terrestrial effects on radio wave propagation.									
UNIT I	ANTENNA FU	JNDAMENTALS			9						
	Vector Potentia	Parameters – Reciprocity Principle – Friis Transmission Formula – I al – Power Radiated and Radiation Resistance of Current Element – R e Dipole Antennas – Folded Dipole – Loop Antenna.									
UNIT	ANTENNA AF	RRAYS			9						
Π	-	rs – Broad-side Array – End-Fire Array – Collinear Array and Parasitic ication – Binomial Array – Chebyshev Array – Taylor Series.	c A	rray	-						
UNIT	MICROWAVE	EANTENNAS			9						
III		a – Normal Mode and Axial Mode Operation – Yagi Uda – Antenna- Log al Antenna – Rhombic Antenna – Horn Antenna – Reflector Antenna - Mio									
UNIT	ANTENNA MI	EASUREMENTS AND SPECIAL ANTENNAS			9						
IV	– Impedance –	of Different Antenna Parameters – Radiation Pattern – Gain – Phase – Pola Efficiency – Antennas for Special Applications – Antenna on Cellular Ha led Antennas – UWB – Plasma Antenna.									
UNIT	RADIO WAVE	E PROPAGATION			9						
V	Calculation of Calculation of I – Mechanism of Earth's Magnet	Ground Wave Propagation- Attenuation Characteristics for Ground Wave Propagation – Calculation of Field Strength at a Distance – Space Wave Propagation – Duct Propagation – Calculation of Field Strength at a Distance – Sky Wave Propagation – Structure of the Ionosphere – Mechanism of Refraction – Refractive Index – Critical Frequency- Skip Distance – Effect of Earth's Magnetic Field – Attenuation Factor for Ionosphere Propagation – Maximum Usable Frequency – Fading and Diversity Reception.									
				То	tal: 45						
TEXT B	OOKS										
1.		and Ronald Marhefka, "Antennas", Tata McGraw-Hill Book Company, Re	nri	nt 2	016						
1.		and ronald marnerika, <i>machinas</i> , rata mooraw-min book Company, R	-pri	in 2	510.						
2.	C.A.Ballanis, "A	Antenna Theory Analysis and Design", Wiley inter science, 2006.									
REFERE	ENCE BOOKS										
1.	Prasad K.D., "A	Antennas and Wave Propagation", Satya Prakashan, Reprint 2018.									
2.	Jordan E.C and	Balmain, "Electro Magnetic Waves and Radiating Systems", PHI, 2015.									
		Dumum, Electro magnetic waves and Radiating Systems, 1111, 2015.									

U15EC602	R DIGITAL IMAGE PROCESSING L T P O	2
		6
COURSE O	UTCOMES	
At the end o	f each unit, the students will be able to -	
	scribe the fundamentals of monochrome and color image processing and analyse the basic relations between	
	els, connectivity and distance measures.	
A -	ply DFT DCT, DST, Walsh, Hadamard, Haar, wavelet and SVD transform for images. ply image enhancement techniques in spatial and frequency domain.	
	alyze image restoration using constrained and unconstrained filters and image segmentation approaches.	
	praise the need for image compression using lossy and lossless techniques and Morphological operations.	
	DIGITAL IMAGE FUNDAMENTALS AND TRANSFORMS	9
Ι	Fundamental Steps in Digital Image Processing – Elements of Visual Perception – Some Basic Relationship Between Pixels – Connectivity – Distance Measure – Brightness – Contrast – Hue- Saturation – Mach Band Effect – Image Sampling – Quantization – Dither – Colour Image Fundamentals RGB – HSI Models – Conversion from RGB to HSI.	
UNIT	IMAGE TRANSFORMS	9
II	1D DFT – 2D Transforms – DFT – DCT – DST – Walsh – Hadamard – Haar Transform – Discrete Wavelet Transform – Multi Resolution Analysis – SVD	
UNIT	IMAGE ENHANCEMENT	(
III	Spatial Domain Approach – Point Processing – Image Negative – Contrast Stretching – Gray Level Slicing – Histogram Equalization – Image Addition – Subtraction – Averaging – Smoothing Filters – Spatial LPF – Median Filter – Sharpening Filters – Spatial HPF – High Boost Filter – Derivative Filters Frequency Domain Filters – Homomorphic Filter.	
UNIT	IMAGE RESTORATION AND SEGMENTATION	ç
IV	Degradation Model – Noise Models – Types of Restoration – Inverse Filtering – Least Mean Square (wiener-parametric wiener) Filter – Image Segmentation – Point – Line and Edge Detection – Region Based Segmentation – Region Splitting and Merging – Thresholding.	
UNIT	IMAGE COMPRESSION AND MORPHOLOPGICAL OPERATIONS	(
V	Image Compression – Lossless Compression – Huffman Coding – Minimum Variance Huffman Coding – Arithmetic Coding – LZW Coding – Lossy Compression – Transform Coding – Compression Standards – JPEG Image Compression Standards – MPEG Video Compression Standards-Block Diagram Approach. Standard Binary Morphological operations-Dilation and Erosion based Operations.	
ł	Total	45
TEXT BOO	KS	1
1.	Rafael C- Gonzalez- Richard E-Woods, "Digital Image Processing", Pearson Education, Eleventh Impressi 2013.	on,
2.	Jayaraman S., Esakkirajan and Verrakumar, "Digital Image Processing", TMH New Delhi, 2011.	
REFERENC	ZE BOOKS	
1.	Annadurai S., R. Shanmugalakshmi, "Fundamentals of Digital Image Processing", Pearson Education India 2007.	l,
2.	Anil K- Jain, "Fundamentals of Digital Image Processing", Pearson/Prentice Hall of India, 2002.	
3.	Sridhar.S, "Digital Image Processing", Oxford University Press, First Edition, 2011.	
4.	Sabeenian R.S., "Digital Image Processing", Sonaversity publication, Second Edition reprint, 2014.	
5.	Kenneth R. Castleman, "Digital Image Processing", Pearson, 2009.	

U15EC603R

EMBEDDED SYSTEMS

L T P C 3 0 0 3

COURSI	E OUTCOMES						
At the en	d of each unit, the students will be able to -						
1.	Obtain a broad knowledge on hardware and software architectures of an embedded system.						
2.	Get the various design process and parameter analysis of the embedded system.						
3.	Gain the familiarity on PIC microcontroller.						
4.	Provide an in depth exposure on real time operating system.						
5.	Design the software and hardware architecture of real time applications.						
UNIT	ARCHITECTURE OF EMBEDDED SYSTEMS						
Ι	Introduction – Application Areas – Categories of Embedded System – Specialties of Embedded System – Recent Trends in Embedded System – Overview of Embedded System Architecture – Hardware Architecture – Software Architecture – Communication Software –Process of Generation of Executable Image – Development-Testing.						
UNIT		9					
П	Embedded System Design Process – Formalism for System Design – Memory System Mechanism – CPU Performance – CPU Power Consumption – CPU Buses – Memory Devices – I/O Devices – Program Design – Model of Programs – Analysis and Optimization of Execution Time – Power – Energy – Program Size – Program Validation and Testing.						
UNIT		9					
III	PIC 16C61 / 71 Microcontroller Architecture – FSR – Reset Action – Oscillatory Connections – Memory Organizations – Instructions – Addressing Modes – I/O Ports-Interrupts – Timers – ADC.						
UNIT	REAL-TIME OPERATING SYSTEM CONCEPTS	9					
IV	Architecture of the Kernel – Task and Task Scheduler – Interrupt Service Routines – Semaphores – Mutex – Mailboxes – Message – Queues – Event Registers – Pipes – Signals – Timers – Memory Management – Priority Inversion Problem.						
UNIT		9					
V	Case Study of an Automatic Chocolate Vending Machine using MUCOS RTOS – Case Study of an Embedded System for Set-top Boxes – Case Study of an Embedded System for a PDA.						
	Total	45					
		l					
TEXT B	OOK						
1.	Marilyn Wolf, "Computers as Components - Principles of Embedded Computer System Design" Edition, Morgan Kaufmann Publisher, (An Imprint from Elsevier), 2016.	, 4 th					
REFERE	ENCE BOOKS						
1.	Ajay V Deshmukh, "Microcontrollers Theory and Applications", 3 rd Edition Paper back, Tata McG Hill education, 2017.	Braw					
2.	Shibu K V, "Introduction to Embedded Systems", 2 nd Edition, McGraw Hill, 2016.						
3.	Raj Kamal, "Embedded Systems Architecture Programming and Design", 3rd Edition, TMH, 2014.						
4.	Xiaocong Fan, "Real-Time Embedded Systems: Design Prinicple and engineering practices", SCI-Tech Connect, Else 2016.	evier,					

U15EC604R

DIGITAL IMAGE PROCESSING LABORATORY

COURSE O	
At the end o	f each experiment ,the students will be able to -
	ite a MATLAB code to demonstrate and perform various operations related to image processing.
2. Gei	nerate a LABVIEW code to demonstrate and perform various operations related to image processing.
3. Wr	ite a MATLAB code or Generate a LABVIEW code to extract features from Images.
Exp.No	List of Experiments
	Using Lab VIEW
1.	Displaying the Image Properties and Pixel Distance
2.	Re-Sample a given image
3.	Extraction of planes from a given image - RGB and HSI
4.	Image Arithmetic (Addition, Subtraction, Multiplication and division of two image)
5.	Scalar processing of an image (Addition, Subtraction, Multiplication and division of a scalar quantity on an image)
6.	Computing the DWT of an image and displaying the LL, LH, HL and HL images
7.	Computing Discrete Fourier Transform of a given image
8.	Extracting 1st Order statistical features of an image (Mean and Standard Deviation alone)
9.	Computing the Image Histogram and Histogram equalization for the given image.
	Using MATLAB
10.	Demonstrating False Contour Effect
11.	Extraction and display of each bits as an image for a given 8 bit gray scale image
12.	Computing Fourier Transform and reconstruction of original image from Fourier Transform a. Without Zero-padding b. With Zero-padding
13.	Frequency Domain Image Enhancement a. Low Pass Filter b. High Pass Filter c. Band Pass Filter
14.	Spatial Domain Image Enhancement d. Average Filter e. Median Filter f. Edge Enhancement
15.	Demonstrating JPEG Compression using DCT
16.	Creating a degradation model for a given image and applying Wiener Filter
17.	Edge Detection Algorithms

U15EC605	R	E	MBEDDEI	D SY	YSTE	EMS	LAB	OR	ATO	RY			L 0] (P 2	-
	UTCOMES	ent .the studer	nts will be a	able to	to -												
1. Design	n an embedde controller, A	ed system to	o get input	it fro	om a							ontr	olle	ers	. (8	95	1
variou	n a system by is communic 30 microcon	ation protoc			-										-		
-	n a system by aspberry Pi 3	-	g with late	est m	micro	ocon	troll	ers	like	Intel	Galil	eo C	Gen	2	boa	urd	
Exp.No	List of Exp	periments															
with 8951	acing, progr Microcontr Arduino IDE	oller, Ardui	ino UNO	boai	ard a	and '	TI M	ISP	430	micr	-						
1	LED Contr	rol using tog	ggle switc	ches a	s and	pus	hbut	ton	s.								
2	Interfacing	g matrix key	pad ,16 X	X 2 L	LCD	and	8 X	8 I	ED	Dot	Matri	X					
3	Interfacing	Relay and	Buzzer.														
4	PWM Base	ed Speed Co	ontrol of S	Servo	vo M	otor	· by F	Pote	entio	mete	r.						
5		g analog and ation. (UAF	-	ensor	ors w	vith 1	micro)CO	ntrol	lers l	based	ons	seria	al/	/par	all	el
6	Interfacing protocol.	g analog and	l digital se	ensor	ors w	vith 1	micro)CO	ntrol	llers l	based	onl	[² C	'a	nd	SP	I
7	Study of in	nterrupts usi	ng IR obs	stacle	le sei	nsor	and	dev	elop	oing a	a visit	tor c	oun	nte	er		
8	Interfacing	g of microco	ontrollers v	with	h MA	ATL.	AB.										
9	Study of Ir	ntel Galileo	Gen 2 boa	oard a	and i	its p	rogra	amı	ning	Ţ.							·
10	Study of R	aspberry Pi	3 board, 1	Prog	gram	ımir	ng &	Sin	nula	tion i	n Pyt	hon					
	Simulators	/Tools.		2	-		-				-						
11		case study in	_		ign o	of IO	T da	ta l	ogge	er, W	iFi ap	oplic	atio	on	s by	7	
	interfacing	with micro	controller	rs.													

DATA STRUCTURES AND OBJECT ORIENTED PROGRAMMING IN C++ LABORATORY

COURSE OUTCOMES

At the end of each experiment, the students will be able to

1. Des	sign and develop simple programs using basic concepts of C++
2. Dev	velop programs using the concept of classes, static members and constructors
3. Dev	velop programs using Polymorphism and inheritance.
Exp. No.	List of Experiments:
1.	Functions with call by value, call by reference, default arguments and function overloading.
2.	Design of classes with static and non static members, friend functions and creating array of objects.
3.	Implementation of inheritance and polymorphism.
4.	Array implementation of list ADT.
5.	Linked list implementation of list ADT.
6.	Implementation of stack ADT using linked list.
7.	Conversion of infix to postfix expression.
8.	Implementation of queue ADT using array.
9.	Implementation linear search & binary search.
10.	Implementation of sorting algorithms.
11.	Implementation of breadth first and depth first traversals.

15EC902	2R	WIRELESS COMMUNICATION	L	Т	Р	С
			3	0	0	3
COURSE	E OUTCO	DMES				
At the en	d of each	unit, the students will be able to -				
		knowledge of basic communication systems and its principles, describe the Wir e Spectrum Allocation.	eles	s Sy	sten	ns and
2. N	Iathemati	ically analyze mobile radio propagation mechanisms and diversity Techniques.				
3. A	nalyze th	e Path loss models, Design Base Station (BS) parameters and analyze the anten	na c	confi	gura	ations.
4. A	nalyze ar	nd examine the multiple access techniques and its application.				
5. A	ssess the	latest wireless technologies.				
UNIT I	History Systems Data Se Low Po	DUCTION TO COMMUNICATION SYSTEMS of Wireless Communication – Wireless Vision – Technical Issues – Curre s – Cellular Telephone Systems – Cordless Phones – Wireless LANs – Wide An ervice – Broadband Wireless Access – Paging Systems – Satellite Networks ower Radios – Ultra Wideband Radios – The Wireless Spectrum –Methods for ion – Spectrum Allocations for Existing Systems.	rea – L	Wire ow-0	eless Cost	S t
UNIT II	MOBIL Mobile Reflecti Zone Ge – Divers	E RADIO PROPAGATION, FADING AND DIVERSITY TECHNIQUES Radio Propagation – Reflection – Reflection from Dielectrics – Brewst on from Perfect Conductors – Ground Reflection (Two-Ray) model – Diffractio eometry – Knife - Edge Diffraction Model – Multiple Knife - Edge Diffraction sity Techniques.	on -	- Fre	snel	L
UNIT III	Path Lo Log-Dis	LOSS MODELS AND BASICS OF ANTENNA ss Prediction over Hilly Terrain – Practical Link Budget Design using Path Lo stance Path Loss Model – Log - Normal Shadowing – Determination of Pe ge Area – Design Parameters at Base Station – Antenna Location – Spacing – urations.	erce	ntag	e of	f
		LE ACCESS TECHNIQUES				
	Division	ion to Multiple Access Techniques – Frequency Division Multiple Access (FDM Multiple Access (TDMA) – Code Division Multiple Access (CDMA) – Sprea Access – Power Control –WCDMA – CDMA Network Design OFDM and MC	nd S	pect	rum	
UNIT V	Global GSM R	T WIRELESS TECHNOLOGIES System for Mobile (GSM) – GSM Services and Features – GSM System Ar Radio Subsystems and Channel Types – 3G and 4G(LTE) – NFC Systems logy – HiperLAN – Ad hoc Networks – Bluetooth.				
					T	otal: 4
TEXT B						
1.		paport, "Wireless Communication Principles", (2/e), Pearson, 2013.				
2.	Andrea	Goldsmith, "Wireless Communication", Cambridge University Press, 2012.				
REFERE						
1.		lisch, "Wireless Communications", Wiley, 2013.				
2.	P .Muth	u Chidambara Nathan, "Wireless Communications", PHI, 2013.				

U15EC916R		MEASUREMENT AND INSTRUMENTATION				Р	С
				3	0	0	3
COURSE	E OUTCOMES						
At the en	d of each unit,	he students will be able to -					
1. Dis	scuss the basic	of measurement and to study the various digital and analog in	nstruments				
2. Ex	amine the fund	mentals of signal generators and analyzers					
3. Ar	alyze the work	ing of cathode ray oscilloscope and digital storage oscilloscop	be.				
4. Ex	plain the vario	s storage and display devices					
5. Ex	plain basics of	virtual instrumentation with the basic programming technique	e				
UNIT		ANALOG INSTRUMENTS					
I		hod for measuring frequency, period, Time interval					
1		sor based DMM - IEEE 488 bus - D.C, A.C voltmeters - An	mmeters –	Mul	time	er –	
	True RMS						_
UNIT		ENERATORS AND ANALYZERS	C				
II		enerator – Frequency synthesized sine wave generator – Swe					9
	-	quare wave generator - Function generator - Wave ana	lyzer – A	pplic	atioi	1s –	
		stortion analyzer – Spectrum analyzer – Applications.					
UNIT		RAY OSCILLOSCOPE		~ .			
III	-	pose oscilloscope – Vertical and horizontal deflection sy					y y
	-	ce – Dual beam and dual trace – Probes – Oscilloscop	e techniqu	es –	Spe	ecial	
	_	s – Storage oscilloscopes – Sampling oscilloscope.					
UNIT		ND RECORDING DEVICES					
IV		display - Segmental and dot matrix display - X-Y reco		-		-	u u
1,		Digital recording - Data loggers. Interference and screen	ing – Elec	ctrost	tatic	and	
	electromag	etic interference and earth loops.					
UNIT	VIRTUAL	NSTRUMENTATION					
V	Historical	erspective - Need of VI - Advantages of VI - Define V	VI – Block	c dia	ıgrar	n &	9
v	Architectur	of VI - Data flow techniques - Graphical programming in a	data flow -	- Cor	npar	ison	
	with conver	tional programming					
						To	otal: 45
TEXT BO	OOKS						
1.	Albert D. Hel	rick and William D. Cooper, "Modern Electronic Instrument	ation and I	Meas	uren	ient	
		2 nd edition, Prentice Hall of India, 2008.					
2.	1	& Joseph John, "Virtual Instrumentation using LabVIEW", 2	nd edition,	McG	raw	Hill	, 2017.
DEEEDE	NCE BOOKS						
			et				
1.	Oliver, B.M. 2008.	nd Cage. J.M., "Electronic Measurements and Instrumentation	<i>on",</i> 1 st edi	tion	McC	braw	Hill,
2.	Joseph J. Carr, "Elements of Electronic Instrumentation and Measurements", 3rd Edition, Pearson Education, 2003.						
3.	Bell, D.A., "	Electronic Instrumentation and Measurements", 3rd edition, P.	rentice Hal	l of l	India	, 20	13
4.	Rajendra Pra 2012.	ad, "Electronic Measurements and Instrumentation", 4 th edit	ion, Khann	a Pu	blish	ers,	
5.	Gupta, B.R	Electronics and Instrumentation", S. Chand Co. (P) Ltd., 200	03.				
	Supu, D.K.,	2. cett entres who men whom whom you chund co. (1) Ett., 200					

U15EC9	26R	MACHINE LEARNING AND ITS APPLICATIONS	L	Т	Р	С
			2	0	2	3
COURSE	E OUTCO	<u>OMES</u>				
At the en		n unit, the students will be able to -				
		lize the significance of machine learning techniques and its parameters				
		lement basic machine learning algorithms in Python and Pandas.				
		ribe a python program for supervised learning and its applications ve basic classification problems using ANN and unsupervised classification				
		ign an architecture for CNNs and its applications				
UNIT I		DUCTION TO MACHINE LEARNING AND ITS PARAMETERS				12
	Machin Algorit	of Vectors and Matrices -Machine learning – Application of Machine learning le learning – Representation of Model- Cost function Notation – Gradier hm – Measuring Accuracy of Hypothesis Function – Confusion Matrix - Se city – Precision – Accuracy-False Negative Rate-False Positive Rate & F1 Score	nt E ensit) esce	nt	
UNIT	DATA	PRE-PROCESSING USING PANDAS & PYHTON				12
П	Python and Sci	ction about Python – Basic Syntax- Python identifiers- Basic Operations of Decision Making- Looping – Functions – NumPy -Matplotlib – Introduction kit Learn & programming -Data cleaning – Data Integration – Data Reduction on-Variance-Covariance-Eigen Values & Vectors-PCA.	to	Pand	as	
UNIT	SUPER	VISED LEARNING ALGORITHMS				12
III	and Sca Estimat Model	ction to supervised learning and regression - Statistical Relation between Two atter Plots – steps to establish a Linear Regression using Python– Evaluation cors -Introduction and scenarios of Logistic Regression – Building Logistic I using Python and Pandas - Maximal Likelihood Estimation using python ct a Decision Tree.	of Regi	Mod ressi	lel on	
UNIT	BASIC	S OF ANN, SVM & UNSUPERVISED LEARNING ALGORITHMS				12
IV	– McCu Linear	ction to ANN – Biological Neuron – Basic of ANN Architectures – Activation ulloch Pitts Model – K-NN – Linear SVM with examples (Vectors) using pyth SVM with examples (Vectors) using SVM - Introduction to clustering – ing – K- Means Algorithm theory and programs.	on -	– No	n-	
UNIT	CONV	OLUTIONAL NEURAL NETWORKS (CNNs DEEP LEARNING)				12
V	linear	2D-Convolution – Convolution layer and its types – Pooling layer and its type units' layer-Architecture design procedure for CNN- LeNET and AlexN cture-DIGITS-Procedure and Programs for Image classifications.				
				Т	otal	: 60
TEXT B	OOK					
1.	Anurad	ha Srinivasaraghavan, Vincy Joseph, Machine Learning, Wiley-2019.				
REFERE						
1.		man K. P., Loganathan, R., and Ajay, V., Machine Learning with SVM ar s. PHI Learning Pvt. Ltd., 2009.	nd o	ther	Ke	mel
2.	Christo	pher M. Bishop, Pattern Recognition and Machine Learning -Springer -2010				

COURSE OUTCOMES: At the end of the course, the students will be able to,

U15EC928R

- 1. Analyze the suitable sensor to design an IOT based system
- 2. Enhance the knowledge on communication modules and network models
- 3. Develop the IOT protocol for designing sensor based applications
- 4. Understand the various embedded hardware platform for designing IOT applications
- 5. Design and develop the complete embedded and IOT application modules

UNIT I: SENSORS AND ACTUATORS

Introduction - Sensor Technology - Analog Sensors- Digital sensors - Temperature, Humidity, Distance, Light and sound, position tracking, Sound, Sensing the Things, Motion sensor for Moving Objects, Pressure Sensors, Environmental monitoring sensor, Location – Actuators.

UNIT II: FUNDAMENTALS OF NETWORKING AND COMMUNICATION **MODULES**

Components – Direction of Data Flow – Networks – Components and Categories – Types of Connections – Topologies – Protocols and Standards – ISO / OSI Model – TCP/IP Model. Router, Switch, Hub, Bridge.

Communication modules - Zigbee - LoRa - RFID - Bluetooth, Wi-Fi - MQTT, CoAP,

UNIT III: FUNDAMENTALS of IOT

Introduction - Definition and Characteristics of IoT - Physical design - IoT Protocols - Logical design - IoT communication models, IoT Communication APIs - Enabling technologies - Wireless Sensor Networks, Cloud Computing, Big data analytics, Communication protocols, Embedded Systems, IoT Levels and Templates - Domain specific IoTs - IoT Architectural view.

UNIT IV: M2M and IOT EMBEDDED PLATFORMS

Introduction – M2M – Difference between IOT and M2M- Software defined networking – Network Function Virtualization – Embedded platforms for prototyping: Arduino, Intel Galileo, Intel Edison, Raspberry Pi- Introduction to BeagleBone, mBED

UNIT V: Real Time Applications of IOT

Case study on Home automation - smart parking system - Weather monitoring system - smart agriculture irrigation system

Lecture: 45, Tutorial: 00, Total: 45 Hours

TEXT BOOKS

- 1. Arshdeep Bahga, Vijay Madisetti, "Internet of Things-A hands-on approach", Universities Press,2015
- 2. Raj Kamal, "Internet of Things Architecture and Design Principles", Mc Graw H ill Education Pvt.Ltd., 2017.

REFERENCE BOOKS

- 1. David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jerome Henry, -IoT Fundamentals: Networking Technologies, Protocols and Use Cases for Internet of Things, Cisco Press, 2017
- 2. Pethuru Raj and Anupama C. Raman, "The Internet of Things: Enabling Technologies, Platforms, and Use Cases", CRC Press

LTPC

3 0 0 3

09

09

09

09

09

- 3. Jan Ho[°] ller, Vlasios Tsiatsis , Catherine Mulligan, Stamatis , Karnouskos, Stefan Avesand. David Boyle, "From Machine-to-Machine to the Internet of Things – Introduction to a New Age of Intelligence", Elsevier, 2014
- 4. Dr. SRN Reddy, Rachit Thukral and Manasi Mishra, "Introduction to Internet of Things: A practical Approach", ETI Labs

Week 1: Introduction to cryptography, Classical Cryptosystem, Block Cipher.

Week 2: Data Encryption Standard (DES), Triple DES, Modes of Operation, Stream Cipher. Week 3: LFSR based Stream Cipher, Mathematical background, Abstract algebra, Number Theory. Week 4: Modular Inverse, Extended Euclid Algorithm, Fermat's Little Theorem, Euler Phi-Function, Euler's theorem.

Week 5: Advanced Encryption Standard (AES), Introduction to Public Key Cryptosystem, Diffie-Hellman Kev Exchange, Knapsack Cryptosystem, **RSA** Cryptosystem. Week 6: Primarily Testing, ElGamal Cryptosystem, Elliptic Curve over the Reals, Elliptic curve Modulo Prime а Week 7: Generalized ElGamal Public Kev Cryptosystem, Rabin Cryptosystem.

Week 8 : Message Authentication, Digital Signature, Key Management, Key Exchange, Hash Function.

Week 9 : Cryptographic Hash Function, Secure Hash Algorithm (SHA), Digital Signature Standard (DSS).

Week 10: Cryptanalysis, Time-Memory Trade-off Attack, Differential and Linear Cryptanalysis.Week 11: Cryptanalysis on Stream Cipher, Modern Stream Ciphers, Shamir's secret sharing and BE,Identity-basedEncryption (IBE), Attribute-basedEncryption(IBE), Attribute-basedEncryption(ABE).Week 12: Side-channel attack, The Secure Sockets Layer (SSL), Pretty Good Privacy (PGP),Introduction to Quantum Cryptography, Blockchain, Bitcoin and Cryptocurrency.

NOC21-CS24 INTRODUCTION TO MACHINE LEARNING

Week 0: Probability Theory, Linear Algebra, Convex Optimization - (Recap)

Week 1: Introduction: Statistical Decision Theory - Regression, Classification, Bias Variance

Week 2: Linear Regression, Multivariate Regression, Subset Selection, Shrinkage Methods, Principal Component Regression, Partial Least squares

Week 3: Linear Classification, Logistic Regression, Linear Discriminant Analysis

Week 4: Perceptron, Support Vector Machines

Week 5: Neural Networks - Introduction, Early Models, Perceptron Learning, Backpropagation, Initialization, Training & Validation, Parameter Estimation - MLE, MAP, Bayesian Estimation

Week 6: Decision Trees, Regression Trees, Stopping Criterion & Pruning loss functions, Categorical Attributes, Multiway Splits, Missing Values, Decision Trees - Instability Evaluation Measures

Week 7: Bootstrapping & Cross Validation, Class Evaluation Measures, ROC curve, MDL, Ensemble Methods - Bagging, Committee Machines and Stacking, Boosting

Week 8: Gradient Boosting, Random Forests, Multi-class Classification, Naive Bayes, Bayesian Networks

Week 9: Undirected Graphical Models, HMM, Variable Elimination, Belief Propagation

Week 10: Partitional Clustering, Hierarchical Clustering, Birch Algorithm, CURE Algorithm, Density-based Clustering

Week 11: Gaussian Mixture Models, Expectation Maximization

Week 12: Learning Theory, Introduction to Reinforcement Learning, Optional videos (RL framework, TD learning, Solution Methods, Applications)

Books and References

- 1. The Elements of Statistical Learning, by Trevor Hastie, Robert Tibshirani, Jerome H. Friedman (freely available online)
- 2. Pattern Recognition and Machine Learning, by Christopher Bishop (optional)

NOC21-EE32

Sensors and Actuators

Week 1:

Basics of Energy Transformation: Transducers, Sensors and Actuators

Week 2:

Understanding of thin film physics: Application in MOSFET and its variants

Week 3:

Thin Film Deposition Techniques: Chemical Vapor Deposition (APCVD, LPCVD, UHVCVD, PECVD, ALCVD, HPCVD, MOCVD)

Week 4:

Thin Film Deposition Techniques: Physical Vapor Deposition (Thermal Deposition, E-beam Evaporation, Sputtering, Pulsed Laser Deposition)

Week 5:

Basics understanding of Photolithography for pattering layer. Detailed overview of Etching methods.

Week 6:

Understanding various gas sensors: Optical gas sensor, Metal oxide semiconductor gas sensor, Field effect transistor gas sensor, Piezoelectric gas sensor, Polymer gas sensor, Nano-structured based gas sensors

Week 7:

Design and fabrication process of Microsensors: Force Sensors, Pressure Sensors, Strain gauges and practical applications

Week 8:

Explain working principles of Actuators. Piezoelectric and Piezoresistive actuators, micropumps and micro actuators with practical applications

Week 9:

Understanding basics of microfluidics to assist Photomask design using Clewin Software, pattern transfer techniques, PDMS moulding and degassing, device bonding techniques.

Week 10:

Simulation, Optimization and characterization of various sensors using COMSOL Multiphysics

Week 11:

Understanding of Sensor Interfacing with Microprocessor to build electronic system

Week 12:

Static and Dynamic Characteristic Parameters for Sensors and Actuators, Calibration of Sensor based electronics systems.

Week 1 Introduction to data analytics and Python fundamentals : Introduction to data analytics-Python Fundamentals-I Python Fundamentals-II-Central Tendency and Dispersion-I -Central Tendency and Dispersion-I Important Data files. Week 2 Introduction to probability Introduction to Probability-I - Introduction to Probability-II Probability Distributions-I Probability Distributions-II Probability Distributions-III. Week 3 Sampling and sampling distributions ٠ Python Demo for Distributions-Sampling and Sampling Distribution-Distribution of Sample Means, population, and variance-Confidence interval estimation: Single population - I-Confidence interval estimation: Single population - II. Week 4 Hypothesis testing : Hypothesis Testing- I-Hypothesis Testing- II-Hypothesis Testing- III-Errors in Hypothesis Testing-Hypothesis Testing: Two sample test- I-Important Data Sets. Week 5 Two sample testing and introduction to ANOVA Hypothesis Testing: Two sample test- II-Hypothesis Testing: Two sample test- III-ANOVA - I-ANOVA - I I -Post Hoc Analysis(Tukey's test)-Important Data files. Two way ANOVA and linear regression Week 6 Randomize block design (RBD)-Two Way ANOVA-Linear Regression - I-Linear Regression - II-Linear Regression - III-Important Data files. Week 7 : Linear regression and multiple regression Estimation, Prediction of Regression Model Residual Analysis-Estimation, Prediction of Regression Model Residual Analysis - II-MULTIPLE REGRESSION MODEL - I-MULTIPLE REGRESSION MODEL-II-Categorical variable regression-Important data Files. Concepts of MLE and Logistic regression Week 8 : Maximum Likelihood Estimation- I-Maximum Likelihood Estimation-II-LOGISTIC REGRESSION- I-LOGISTIC REGRESSION- II-Linear Regression Model Vs Logistic Regression Model-Important data files. Week 9: **ROC** and Regression Analysis Model Building Confusion Matrix and ROC -I and II-Performance of Logistic Model-III-Performance of Logistic Model-III-Regression Analysis Model Building-I – Regression Analysis Model Building-II. c^2 Test and introduction to cluster analysis Week 10: Chi-Square Test of independence -I -II-Square Goodness of Fit Test-Cluster analysis. Week 11: Clustering analysis. Cluster Analysis-III-Part IV-Part V-K-Means clustering-Hierarchical method of clustering. Week 12: Classification and Regression Trees (CART) Hierarchical method of clustering-Classification and Regression Tress(CART-1) - Measures of attitude selection-CART.

Semester –VI	U15 GE 601B R: SOFT SKILLS AND APTITUDE – IV L T P C Marks (For all Department except Civil) 0 0 2 1 100				
Course Outcomes					
At the end of the cou	urse the student will be able to:				
I. Demonstrate capa	abilities in job-oriented company selection processes using the hands-on approach				
2. Solve problems of	of any given level of complexity in all areas of quantitative aptitude and logical bre 70-75% marks in company-specific internal tests				
 Demonstrate adva specific internal to 	anced-level verbal aptitude skills in English and score 70-75% marks in company- ests				
	Demonstrating Soft -Skills capabilities with reference to the following topics:				
1. Soft Skills	a. Mock group discussions				
	b. Mock interviews				
	c. Mock stress interviews				
	Solving problems with reference to the following topics:				
	a. Crypto arithmetic problems				
	b. Permutation & Combination				
2 Quantitative Anti	Destability				
2. Quantitative Apt	d. Clocks & Calendars				
and	e. Functions & polynomials				
Logical Reasoning	C I illus				
Logical Acasoling	g. Geometry				
	h. Puzzles				
	i. Data interpretation				
	j. Data Sufficiency				
	k. Company specific aptitude questions (AMCAT & Co cubes)				
	Demonstrating English language skills with reference to the following				
	topics:				
	a. Writing captions for given pictures				
	a. Writing captions for given picturesb. Reading comprehension				
a. 3. Verbal Aptitu	 c. Critical reasoning 				
	d. Theme detection				
	e. Jumbled sentences				
1. S. C. C. A.	f. Writing a story on given pictures				
	g. Company specific aptitude questions				

X S

Department of Placement Training Sona College of Technology, Salem-636 065.

<u>ECE</u>

SENSORS AND SMART STRUCTURES TECHNOLOGIES

PREAMBLE:

Advanced sensors, smart materials, and smart structures technology represent an emerging multidisciplinary field that has unlimited potential of broad engineering applications.

Radical developments in material science, telecommunication and sensor technology are about to transform the way of engineering design is conceived and carried out. In the next ten years smart materials and structures, with embedded sensors and systems capable of self-diagnosis, will be part of our life, from simple goods to civil buildings. In recent years, numerous civil infrastructures have been built in metropolitan areas all over the world. The performance of these infrastructures during construction, operation, maintenance, and upgrading is a major concern for the society. The traditional sensors, such as strain gages, thermal couples, pressure transducers, and displacement sensors, are becoming intelligent with integration with a microprocessor, a communication module, and an energy harvesting system. Recent years there are increasing number of smart sensors that are enabled by various nanotechnologies. An equal progress has been made on the actuator front. Solid state actuators, such as shape memory alloys, shape memory polymers, magnetostrictive materials, magnetic shape memory materials, and piezoceramics, have migrated from military/space applications to industrial and consumer applications. Meanwhile, a new class of smart fluids materials, such as magneto-rheological (MR) fluids and electrical-rheological (ER) fluids, have emerged and enable a new class of semi-active control devices, such MR dampers and ER dampers, of which the damping properties can be actively controlled. These smart sensors and smart devices are often integrated with various structures to form so-called smart structures, which possess the ability to sense or/and to respond to environmental or structural changes in a pre-defined way. With the developments in microprocessor technology, wireless communications, and sensor networks, smart sensors, and smart structures are finding more and more applications in structural health monitoring and structural control in aerospace engineering, civil engineering, mechanical engineering, and other disciplines

This course provides an overview of smart technologies from a cross-disciplinary perspective with special focus on, smart materials, strain measuring techniques, fiber optic sensors, autonomous motion sensors, fire and humidity sensor, control devices and actuators, data acquisition ,signal processing and decision making.

U15EC1006R	SENSORS AND SMADT STRUCTURES TECHNOLOGIES	L	Т
0102010000	SENSORS AND SMART STRUCTURES TECHNOLOGIES	L 3	0

COURSE OUTCOMES

At the end of each unit, the students will be able to -

At the en	d of each unit, the students will be able to -	
	1. Insight into the basic concept regarding smart materials and their use in structures.	
	2. Analyze the use of measuring techniques in smart materials and structures.	
	3. Identify the suitable sensors for smart materials.	
	4. Apply the techniques of actuators in smart structures.	
	5. Understand the data acquisition techniques, signal processing and control for smart structures.	
UNIT I	INTRODUCTION TO SMART MATERIALS AND STRUCTURES Introduction to Smart Materials and Structures – Instrumented Structures Functions and Response – Sensing Systems – Smart Bridge – Self Diagnosis – Signal Processing Consideration – Actuation Systems and Effectors.	9
UNIT II	MEASURING TECHNIQUES Strain Measuring Techniques using Electrical Strain Gauges, Types – Resistance – Capacitance – Inductance – Wheatstone Bridges – Pressure Transducers – Load Cells – Temperature Compensation – Strain Rosettes.	9
UNIT III	SENSORS Sensing Technology – Types of Sensors – Physical Measurement using Piezo Electric Strain Measurement – Inductively Read Transducers – The LVDT – Fiber Optic Techniques.Chemical and Bio-Chemical Sensing in Structural Assessment – Absorptive Chemical Sensors – Spectroscopes – Fibre Optic Chemical Sensing Systems and Distributed Measurement –Fire Sensor –Emergency Fire Alarm –Humidity Sensor – Accelerometers – Motion Sensors and Pressure Sensors.	9
UNIT IV	ACTUATORS Actuator Techniques – Actuator and Actuator Materials – Piezoelectric and Electrostrictive Material – Magnetostrictive Material – Shape Memory Alloys – Electro Rheological Fluids– Electro Magnetic Actuation – Role of Actuators and Actuator Materials.	9
UNIT V	SIGNAL PROCESSING AND CONTROL SYSTEMS Data Acquisition and Processing – Signal Processing and Control for Smart Structures – Sensors as Geometrical Processors – Signal Processing – Control System – Linear and Non-Linear.	9
		tal: 45
TEXT B	OOKS	
1.	A.K. Sawhney, "A Course in Electical and Electronic and Measurements and Instrumentation", Dhang and co pvt limited, 2015.	oat rai
2.	Brain Culshaw, "Smart Structure and Materials", Artech House, Borton. London, 1996.	
REFERE	ENCE BOOKS	
1.	L. S. Srinath, "Experimental Stress Analysis", Tata McGraw, 1998.	
2.	J. W. Dally & W. F. Riley, "Experimental Stress Analysis", Tata McGraw, 1998.	
3.	Srinivasan, A.V and Michael McFarland. D, "Smart Structures -Analysis and Design", Cambridge Univer Press, 2001.	sity

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E/B.Tech. Semester VII 2015R (CBCS) Branch: Electronics and Communication Engineering

S. No	Course Code		Course Title	Lecture	Tutorial	Practical	Credit	Total
								Contact
								Hours
			Theory					
1	U15EC701R	Microwave Engine	eering	3	0	0	3	45
2	U15EC702R	Optical Fiber Com	3	0	0	3	45	
3	U15EC703R	Computer Network	3	0	0	3	45	
4	U15EC901R	Elective –	Satellite Communication	- 3	0	0	3*	45
5	U15EC915R	-	Computer Architecture	- 3	0	0	3.	43
	U15EC917R	-	Bio-Medical Instrumentation					
	U15EC924R	1	Professional Ethics and Human Values	3	0	0	3*	45
	U15EC927R		Deep Learning					

*Any 2 electives to be opted by a student among 5 professional electives.

Approved By

Chairperson, Electronics and Communication Engineering BoSMember Secretary, Academic CouncilChairperson, Academic Council & PrincipalDr.R.S.SabeenianDr.R.ShivakumarDr.S.R.R.Senthil Kumar

Copy to:-

HOD/Electronics and Communication Engineering, Seventh Semester BE ECE Students and Staff, COE

Page 1 of 2

	U15CE1003R		Energy Efficiency and Green Building					
	U15CS1004R		Mobile Application Development					
	U15EE1006R		Renewable Energy Systems					
	U15IT1003R	Open	Problem Solving Techniques Using					
6	015111005K		Java Programming	2	0	0	3	45
	U15MC1002R	Elective –	3D Printing Technology	3	0	0	3	15
	U15ME1002R		Renewable Energy Sources					
	U15ME1004R		Industrial Safety					
	U15ME1005R		Maintenance Engineering					
	U15ME1010R		3D Printing					
			Practical					
7	U15EC704R	Microwave and O	Optical Laboratory	0	0	2	1	30
8	U15EC705R	Mini Project		0	0	4	2	60
9	U15EC706R	Comprehensive I	Review	0	0	2	1	30
	·	•			To	tal Credits	22	

Approved By

Chairperson, Electronics and Communication Engineering BoSMember Secretary, Academic CouncilChairperson, Academic Council & PrincipalDr.R.S.SabeenianDr.R.ShivakumarDr.S.R.R.Senthil Kumar

Copy to:-

HOD/Electronics and Communication Engineering, Seventh Semester BE ECE Students and Staff, COE

1) Explain the two RF circuits and networks used in Microwave communication systems.

U15EC701R

Course Outcomes

At the end of the course, the student will be able to

- 2) Analyze the multi- port RF networks and RF transistor amplifiers
- 3) Analyze the passive & active Microwave devices and circuits
- 4) Analyze the microwave generation and to design the Micro strip lines
- 5) Measure and analyze Microwave signal parameters

			(3/2	/1 indic	cates str			PSO Maj ation) 3-		2-Mediur	n, 1-Wea	ak				
COs	Programme Outcomes (POs) and Programme Specific Outcome (PSOs)															
COS	PO1	01 PO2 PO3 PO4 PO5 PO6 PO7 PO8 P09 PO10 PO11 PO12 PSO1 PSO2														
CO1	2	1 PO2 PO3 PO4 PO3 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 3 3 3 2 2 3 2 1 2 2 3 3 2														
CO2	3	2	3	3	3	3	3	2	2	2	2	3	3	2		
CO3	2	3	3	3	3	2	3	2	1	2	3	3	3	2		
CO4	2	2	3	3	3	2	3	2	2	2	3	3	3	2		
CO5	2	2	3	3	3	2	3	2	1	2	3	3	3	2		

Unit I TWO PORT RF NETWORKS-CIRCUIT REPRESENTATION

Review of Low Frequency Parameters – Impedance – Admittance – Hybrid and ABCD parameters – Different Types of Interconnection of Two Port Networks – High Frequency Parameters – Formulation of S Parameters – Properties of S Parameters – Reciprocal and Lossless Network – Transmission Matrix – RF Behaviour of Resistors - Capacitors and Inductors.

Unit II MICROWAVE SEMICONDUCTOR DEVICES AND CIRCUITS

Open - Short and Matched Terminations – Coupling Probes and Loops – Power Divider – Directional Coupler – Attenuators – Phase Shifter – Circulator – Isolator – Impedance Matching Devices– Tuning Screw – Stub and Quarter-Wave Transformers – Crystal Diodes and Schottky Diode – Detector and Mixers – PIN Diode Switch – Gunn Diode Oscillator – IMPATT Diode Oscillator and Amplifier – Varactor Diode and Parametric Amplification.

MICROWAVE ENGINEERING

Unit III RF AMPLIFIERS AND MATCHING NETWORKS

Characteristics of Amplifiers – Amplifier Power Relations – Stability Considerations – Stabilization Methods – Noise Figure – Constant VSWR – Broadband - High power and Multistage Amplifiers – Impedance Matching using Discrete Components – Two Component Matching Networks – Frequency Response and Quality Factor – T and Pi Matching Networks – Microstrip Line Matching Networks.

Unit IV MICROWAVE GENERATION AND MICROWAVE TRANSMISSION LINES

Two Cavity Klystron Amplifier – Power and Efficiency Considerations – Reflex Klystron Oscillators – Modes and Efficiency Considerations – Magnetrons – TWT - Introduction – Micro Strip Lines – Derivation of Characteristic Impedance of Micro Strip Lines using Quasi Static Analysis – Losses in Micro Strip Lines – Quality Factor Q of Micro Strip Lines – Substrate Materials – Parallel Strip Lines – Characteristic Impedance – Attenuation Losses – Coplanar Strip Lines – Shielded Strip Lines – Problems.

Unit V MICROWAVE MEASUREMENTS

Measuring Instruments – VSWR Meter – Power Meter – Spectrum Analyzer – Network Analyzer – Principles – Measurement of Impedance – Frequency – Power – VSWR - Q – factor - Dielectric Constant - Magic Tee - S-Parameter - Return Loss and Directional Coupler.

TOTAL : 45 HOURS

Text Book

- 1) Reinhold Ludwig and Gene Bogdanov, "*RF Circuit Design: Theory and Applications*", Pearson Education Inc., 2011.
- 2) Annapurna Das and Sisir K Das, *"Microwave Engineering"*, Tata Mc Graw Hill Inc., 2nd edition, 2014.

References

- 1) Samuel Y- Liao, "*Microwave Devices and Circuits*", Pearson/Prentice Hall of India, 3rd Edition 2011.
- 2) David M. Pozar, "*Microwave Engineering*", Wiley India (P) Ltd, New Delhi, 2008.
- 3) Thomas H Lee, "*Planar Microwave Engineering: A Practical Guide to Theory, Measurements and Circuits*", Cambridge University Press, 2004.

9

At the end of the course, the student will be able to

- 1) Analyze the basic elements and laws of optical fiber transmission systems
- 2) Analyze the causes for signal degradation in optical fibers
- 3) Illustrate the working of optical sources and coupling techniques
- 4) Evaluate the noise performance in fiber optic receiver
- 5) Analyze the digital transmission systems

			(3/2	2/1 indica	ates stre		PO, PSC correlatio		•	Medium,	1-Weak					
COs			F	Program	me Outc	omes (P	Os) and	Program	nme Spo	ecific Ou	tcome (PS	SOs)				
0.03	PO1															
CO1	2	102 103 103 103 103 103 103 1010 1011 1012 1301 1302 2 3 3 3 2 2 1 1 2 3 3 3 2														
CO2	2	2	3	3	3	2	2	1	1	2	3	3	3	2		
CO3	2	2	3	3	3	2	2	1	1	2	3	3	3	2		
CO4	2	2	3	3	3	2	2	1	1	2	3	3	3	2		
CO5	2	2	3	3	3	2	2	1	1	2	3	3	3	2		

Unit I INTRODUCTION TO OPTICAL

Evolution of Fiber Optic Systems – Elements of an Optical Fiber Transmission Link – Ray Theory –Total Internal Reflection – Acceptance Angle – Numerical Aperture – EM Mode Theory of Optical Propagation – Phase and Group Velocity –Fiber Configurations-Single Mode Fibers-Multimode Fibers – Cut Off Wavelength – Mode Field Diameter – Effective Refractive Index.

Unit II SIGNAL DEGRADATION IN OPTICAL FIBERS

Attenuation – Material Absorption Losses in Silica Glass Fiber – Linear and Nonlinear Scattering Losses – Fiber Bend Losses – Dispersion – Material Dispersion – Waveguide Dispersion – Intermodal Dispersion – Overall Fiber Dispersion – Polarization – Fiber Birefringence – Polarization Mode Dispersion – Polarization Maintaining Fibers – Non Linear Effects 9

Unit III OPTICAL SOURCES AND COUPLING

LED's – LED Structure – Surface Emitters – Edge Emitters – LASER – Diodes – Semiconductor Laser Diodes – Fabry-Perot Lasers – Distributed Feedback (DFB) Lasers – Modulation of LASER Diodes – Temperature Effects – Power Launching and Coupling – Source to Fiber Power Launching – Lensing Schemes for Coupling Improvement.

Unit IV OPTICAL RECEIVERS

PIN Photo Detector – Avalanche Photodiodes – Photo Detector Noise – Detector Response Time – Avalanche Multiplication of Noise – Temperature Effects on Photo Detectors – Phototransistors – Fundamental Receiver Operation– Error Sources – Receiver Configuration – Probability of Error – Quantum Limit

Unit V DIGITAL TRANSMISSION SYSTEMS

Point to Point Link Systems Considerations – Link Power Budget – Rise Time Budget – Erbium Doped Fiber Amplifier (EDFA's) - Wavelength Division Multiplexing (WDM) -DWDM -SONET/SDH - Wavelength Routing Networks - Optical switches.

TOTAL: 45 HOURS

Text Book

- 1) Gerd Keiser, "Optical Fiber Communications", Tata Mc Graw Hill, 5th edition, 2014.
- 2) John M. Senior, "Optical Fiber Communications", Pearson, 3rd edition, 2009

References

- 1) Joseph C.Palais, "Fiber Optic communications", Pearson, 5th edition, 2005
- G.P. Agarwal, "Fiber Optic Communication systems", John wiley&Sons NewYork, 4th edition, 2011

9

At the end of each unit, the students will be able to

- 1) Explain the basic concept in modern data communication and computer networking
- 2) Analyze the functions and services of data link layer
- 3) Categorize the functions and services of network layer
- 4) Examine the basic functions of transport layer and congestion in networks
- 5) Analyze the concepts of various network applications and data security

			(3/2	/1 indica	ates strei) Mappin () 3-Str	U	Medium,	1-Weak					
COs			F	rogrami	me Outc	omes (P	Os) and	Program	ime Spe	ecific Out	come (PS	SOs)				
0.08	PO1															
CO1	2	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 2 3 3 3 2 3 3 2 3 3 3 3														
CO2	2	2	3	3	3	2	1	2		3	2	3	3	3		
CO3	2	2	3	3	3	3	2	3		3	2	3	3	3		
CO4	2	2	3	3	3	3	1	2		3	2	3	3	3		
CO5	2	3	3	3	3	3	2	3		3	2	3	3	3		

Unit I DATA COMMUNICATIONS

Components – Direction of Data Flow – Networks – Components and Categories – Types of Connections – Topologies – Protocols and Standards – ISO / OSI Model – Transmission Media – Coaxial Cable – Fiber Optics – Modems – TCP/IP Model.

Unit II DATA LINK LAYER

Error – Detection and Correction – Parity – LRC – CRC – Hamming Code – Flow Control and Error Control - Stop and Wait – Go Back N ARQ – Selective Repeat ARQ- Sliding Window Techniques – HDLC.LAN - Ethernet IEEE 802.3 - IEEE 802.4 - IEEE 802.5 – IEEE 802.11–FDDI - SONET – Bridges.

Unit III NETWORK LAYER

Internet Works - Packet Switching and Datagram Approach – IPv4 - IPv6– Subnetting – Routing – Distance Vector Routing – Link State Routing – Routers.

16.06.2021

9

9

Unit IV TRANSPORT LAYER

Duties of Transport Layer – Multiplexing – Demultiplexing – Sockets – User Datagram Protocol (UDP) – Transmission Control Protocol (TCP) – Congestion Control – Quality of Services (QOS) – Integrated Services.

Unit V APPLICATION LAYER

Principles of Network Application – Domain Name Space (DNS) – SMTP – FTP – HTTP - E-Mail - The WEB – Principles of Cryptography – Message Integrity – End Point Authentication – Security Email – Network Layer Security- Modes - Security Protocol – IKE - VPN -Transport Layer Security - SSL Architecture-Application Layer Security - Email Security - PGP-S/MIME.

TOTAL: 45 HOURS

Text Book

- 1) Behrouz A. Foruzan, "Data communication and Networking", Tata McGraw-Hill, fifth edition, 2017.
- 2) James F. Kurouse & W.Rouse, "*Computer Networking: A Topdown Approach Featuring*", Pearson Education, sixth edition, 2017.

References

- 1) Andrew S. Tannenbaum, "Computer Networks", PHI, Fifth edition, 2010.
- 2) William Stallings, "Data and Computer Communication", Tenth Edition, Pearson Education, 2017.
- 3) Larry L.Peterson & Peter S. Davie, "Computer Networks", Harcourt Asia Pvt. Ltd., fifth Edition,2011.

After successful completion of this course, the students should be able to

- 1) Analyze the satellite orbits
- 2) Analyze the space segment and budget equation
- 3) Analyze the earth segment and various test equipments
- 4) Analyze the various multiple access techniques.
- 5) Know the latest trends in satellite and its applications

Pre-requisite

Analog & Digital Communication

			(3/2	/1 indic	cates str		D/PO, P of correl	-		2-Mediun	n, 1-Wea	ık			
COs		Programme Outcomes (POs) and Programme Specific Outcome (PSOs)													
005	PO1														
CO1	3	2 3 3 2 2 2 2 2 3 3													
CO2	3	2	3	3	2		2			2	2	2	3	3	
CO3	3	2	3	3	2		2			2	2	2	3	3	
CO4	3	2	3	3	2		2			2	2	2	3	3	
CO5	3	2	3	3	2		2			2	2	2	3	3	

Unit I SATELLITE ORBITS

Kepler's Three Laws of Planetary Motion – Definition of Terms for Earth – Orbiting Satellites – Orbital Elements – Orbital Parameters – Orbital Perturbations – Station Keeping – Frequency Allocation – Non Geo-Stationary Orbits – Geostationary Orbits – Sun Transit Outages – Limits of Visibility – Look Angle Determination – Sub Satellite Point – Elevation Angle Calculation – Azimuth Angle Calculation – Launching of Geo Stationary Satellites – Launch Vehicles and Propulsion

Unit II SPACE SEGMENT AND SATELLITE LINK DESIGN

9

9

Power Supply – Attitude Control – Spinning Satellite Stabilization – Momentum Wheel Stabilization – Station Keeping – Thermal Control – TT&C Subsystem – Transponders – Wideband Receiver – Input Demultiplexer – Power Amplifier – Antenna Subsystem – Link Design – Satellite Up Link – Down Link – Link Power Budget– C/N0 – G/T– Noise Temperature – System Noise Propagation Factors – Rain and Ice Effects – Polarization.

Unit III EARTH SEGMENT

Transmitters - Receivers - Antennas - Terrestrial Interface - TVRO - MATV - CATV - Test Equipments - Measurements on G/T - C/No - EIRP - Antenna Gain.

Unit IV SATELLITE ACCESS

Modulation and Multiplexing – Voice- Data – Video – Analog – Digital Transmission System – Multiple Access –FDMA Systems – TDMA Systems – Beam Switching and Satellite Switched TDMA – CDMA.

Unit V SATELLITE APPLICATIONS

Mangalyaan – Chandraayan Mobile satellite services – GSM – GPS – INMARSAT – LEO – MEO – Satellite Navigational System – Direct Broadcast satellites (DBS) – Direct to home Broadcast (DTH) – Digital audio broadcast (DAB) – World space services, Business TV(BTV) – GRAMSAT – DVB.

TOTAL: 45 HOURS

Text Book

1) Dennis Roddy, "Satellite Communication", 4th Edition, McGraw Hill International, 2006.

References

- 1) S.Jayapoorani "Satellite Communication", Ist Edition, Scitech Publishers 2017.
- 2) Timothy pratt, Bostian, C W, & Allnult, J, *"Satellite Communication"*, latest edition, John Wiley publications, 2003.
- 3) Bruce R. Elbert, *"The Satellite Communication Applications"*, Hand Book, Artech House Bostan London, 1997.
- 4) Robert Emanuel Fthenakis, *"Manual of Satellite Communications"*, McGraw Hill Book Co., 1984.
- 5) Brian Ackroyd, "*World Satellite Communication and earth station Design*", BSP professional Books, 1990.

9

9

At the end of the course, the student will be able to

- 1) Illustrate the operational concepts of computers and classify instruction set architectures
- 2) Identify the mechanism of control signals generation in Hardwired control and micro programmed control unit
- 3) Illustrate processing of pipelined operation; list various types of hazards and methods to overcome hazards
- 4) Discriminate main memory, cache memory and Virtual memory concepts
- 5) Design I/O system requirements for any commercial processor

			(3/2/	1 indica	ates stre			PSO Maj ation) 3-		2-Mediur	n, 1-Wea	ak				
COs			Pr	ogramr	ne Outo	comes (POs) a	nd Prog	ramme S	Specific O	utcome	(PSOs)				
0.03	PO1	D1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 P09 PO10 PO11 PO12 PSO1 PSO2														
CO1	2															
CO2	2	2	3	3	3							3	3	2		
CO3	2	2	3	3	3							3	3	2		
CO4	3	3	3	3	3							3	3	2		
CO5	3	3	3	3	3							3	3	2		

Unit I BASIC STRUCTURE OF COMPUTERS

Functional Units – Basic Operational Concepts – Bus Structures – Performance and Metrics – Instructions and Instruction Sequencing – Hardware – Software Interface – Instruction Set Architecture – Addressing Modes – RISC – CISC

Unit II BASIC PROCESSING UNIT

Fundamental Concepts – ALU Design – Fixed Point and Floating Point Operations – Execution of a Complete Instruction – Multiple Bus Organization – Hardwired Control – Micro Programmed Control.

16.06.2021

9

Unit III PIPELINING

Basic Concepts – Data Hazards – Instruction Hazards – Influence on Instruction Sets – Data Path and Control Considerations – Performance Considerations – Exception Handling.

Unit IV MEMORY SYSTEM

Basic Concepts – Semiconductor RAM – ROM – Speed – Size and Cost – Cache Memories – Improving Cache Performance – Virtual Memory – Memory Management Requirements – Associative Memories – Secondary Storage Devices.

Unit V I/O ORGANIZATION

Accessing I/O devices – Programmed Input/output -Interrupts – Direct Memory Access – Buses – Interface Circuits – Standard I/O Interfaces (PCI, SCSI, USB, SATA, and ISA) – I/O processors.

TOTAL: 45 HOURS

Text Book

 Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", Fifth Edition, Tata McGraw Hill, 2012

References

- David A. Patterson and John L. Hennessy, "Computer Organization and Design: The Hardware/Software interface", Third Edition, Elsevier, 2005
- 2) William Stallings, "*Computer Organization and Architecture Designing for Performance*", Sixth Edition, Pearson Education, 2003
- Dr.M.Usha, T.S. Srikanth, "Computer System Architecture and Organization", Wiley Publications, 2013

9

At the end of the course, the student will be able to

- 1) Summarize various aspects of bio-potential recording systems from the body
- 2) Interpret the various temperature measurement methods and translate flow of blood as metrics
- 3) Describe the special features of various types of measuring equipment based on heart
- 4) Outline the objectives and working principles of the various diagnosis and radiological equipment's

			O / PO, 8/2/1 inc		· · · ·		relation) 3-Stro	ong, 2-1	Medium,	1-Weak			
			Progra	mme O	utcome	s (POs)	and Pr	ogramr	ne Spe	cific Out	come (PS	SOs)		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	1	1	1	2	1	1	1	1	1	1	2	1
CO2	2	1	1	1	1	2	1	1	1	1	1	1	2	1
CO3	2	1	1	1	1	2	1	1	1	1	1	1	2	1
CO4	2	1	1	1	1	2	1	1	1	1	1	1	2	1
CO5	2	1	1	1	1	2	1	1	1	1	1	1	2	1

Unit I RECORDING INSTRUMENTS

Electro-Physiology and Bio-potential Recording The Origin of Bio-potentials – Biopotential Electrodes – Biological Amplifiers – ECG – EEG – EMG – PCG – EOG – Lead Systems and Recording Methods – Typical Waveforms and Signal Characteristics.

Unit II MEASUREMENT AND ANALYSIS TECHNIQUE

Measurement of Blood Flow – Radiographic – Indicator Dye Dilution – Thermal Convection – Magnetic Blood Flow Rate – Ultrasonic Blood Flow meter – Sphygmomanometer – Blood Gas Analyzer – Oximeter – Auto-Analyzers – Electrophoresis – Colorimeter – Spectrophotometer – Flame Photometer.

Unit III THERAPEUTIC EQUIPMENTS AND PATIENT SAFETY

9

9

9

Stimulators – Defibrillators – Pacemakers – Diathermy – Respirators – Blood Pumps Ventilator – Haemo-dialysis Machine – Role of Laser in Health Care – Patient Safety –

Unit IV MEDICAL IMAGING

X-Ray Imaging and CT scan – Application and X-Ray Therapy – CAT Scan – MRI – PET –Physics of Ultrasound – Ultrasound Imaging – A-Scan and B-Scan Displays – Multi Array Scanning – M-Mode Scanning – Advantages and Disadvantages of Ultrasound Scanning Thermal Imaging Systems.

Unit V COMPUTER APPLICATIONS IN MEDICAL FIELD

Computer Applications in Medicine – Patient Monitoring System – Endoscopy Unit – Radio-pill – Telemedicine and Medical Informatics

TOTAL : 45 HOURS

Text Book

1) Leislie Cromwell, "Biomedical instrumentation and measurement", Prentice Hall of India, New Delhi, 2015

References

- 1) Khandpur, R.S., "Handbook of Biomedical Instrumentation", TATA McGraw-Hill, New Delhi, 2015
- 2) Ananda Natarajan.R, "Biomedical instrumentation and measurement", Prentice Hall of India, New Delhi, 2015.

U15EC924R PROFESSIONAL ETHICS AND HUMAN VALUES

Course Outcomes

At the end of the course, the student will be able to

- 1) Identify the core values that shape the ethical behavior of an engineer
- 2) Utilize opportunities to explore one's own values in ethical issues
- 3) Apply codes of ethics and standards in the engineering field
- 4) Explore various safety issues and ethical responsibilities of an engineer
- 5) Recognize and resolve global issues

			(3/2	/1 indic	cates str			PSO Maj ation) 3-		2-Mediun	n, 1-Wea	ık		
COs			Р	rogram	me Ou	tcomes	(POs) a	nd Prog	ramme S	Specific O	utcome	(PSOs)		
COS	PO1													
CO1			3				3	2	3	3	2	2		
CO2		3 3 2 3 3 2 2 2 3 3 3 1 3 3 2 2												
CO3			2	2	3	3	3	3	3	3	2	2	3	3
CO4		3	3	2	3	3	3	3	3	3	2	2	3	3
CO5		3	2	2	3	3	3	3	3	3	2	2	3	3

Unit I HUMAN VALUES

Morals, Values and Ethics – Integrity – Work Ethics – Service Learning – Civic Virtue – Respect for Others – Living Peacefully – Caring – Sharing – Honesty – Courage – Valuing Time – Co-operation – Commitment – Empathy – Self-Confidence – Character – Spirituality.

Unit II ENGINEERING ETHICS

Senses of Engineering Ethics – Variety of moral issues – Types of inquiry – Moral Dilemmas – Moral Autonomy – Kohlberg's theory – Gilligan's theory – Consensus and Controversy – Profession and Professionalism – Professional Ideals and Virtues – Theories of Right action- Uses of Ethical Theories.

Unit III ENGINEERING AS SOCIAL EXPERIMENTATION

Engineering as Experimentation – Contrasts with standard experiments- Engineers as Responsible Experimenters – Importance and limitations of Codes of Ethics - Industrial Standards - A Balanced Outlook on Law – Case Study: Space shuttle challenger disaster.

Unit IV SAFETY, RESPONSIBILITIES AND RIGHTS

Safety and Risk – Types of risk - Assessment of Safety and Risk – Risk Benefit analysis-Reducing Risk – Case Studies -Chernobyl and Bhopal plant disaster.

Collegiality and Loyalty – Collective Bargaining – Confidentiality – Conflicts of Interest – Occupational Crime – Importance and consequences of whistle blowing - Professional Rights – Employee Rights – Intellectual Property Rights (IPR) – Discrimination

Unit V GLOBAL ISSUES

Multinational Corporations – Environmental Ethics – Computer Ethics and Internet-Engineers and Technological progress – Weapons Development – Engineers as Managers – Consulting Engineers – Engineers as Expert Witnesses and Advisors – Moral Leadership – Participation in professional societies- Sample Code of Conduct (pertaining to specific professional societies)

TOTAL : 45 HOURS

Text Book

- 1) Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw Hill, Indian Edition, Tenth reprint, 2017
- 2) Professional Ethics and Human values- Sonaversity, Edition 2018

References

- 1) Charles D Fleddermann, "Engineering Ethics", Prentice Hall, New Mexico, 2012.
- 2) Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2016
- 3) R.Subramanian, "Professional Ethics ", Oxford University Press, Reprint, 2015
- 4) Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, 2001
- David Ermann and Michele S Shauf, "Computers, Ethics and Society", Oxford University Press, 2003

9

DEEP LEARNING

Course Outcomes

At the end of the course, the student will be able to

- 1) Explain the basic concepts in Neural Networks and applications
- 2) Understand and use feature extraction techniques in Neural Networks
- 3) Learn the fundamentals of deep learning, and the main research activities in this field
- 4) Implement CNN and RNN algorithms and solve real world problems
- 5) Analyse detection and recognition tasks using convolution neural networks

			(3/2	/1 indic	cates str			PSO Maj ation) 3-		2-Mediur	n, 1-Wea	ık				
COs		Programme Outcomes (POs) and Programme Specific Outcome (PSOs)														
COS	PO1	1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 P09 PO10 PO11 PO12 PSO1 PSO2														
CO1	1	1 102 103														
CO2	2	2	3	3	3							3	3	2		
CO3	2	3	2	3	2							3	3	2		
CO4	2	2	3	3	3							3	3	2		
CO5	2	2	3	2	3							3	3	2		

Unit I MODERN PRACTICAL DEEP NETWORKS

Fundamentals Of Neural Networks – Model of Biological and Artificial Neuron – Neural Network Architectures – Activation Functions- McCulloh Pitts neuron Model- Perceptron Learning Algorithms - XOR Problem-K Means Clustering – Decision Trees.

Unit II LINEAR MODELS

Multilayer Perceptron- Gradient Descent- Forward and Backward Backpropagation-RBF-Fully Connected layers- PCA- GLCM - LBP – Particle Swarm Optimization- Cuckoo Search optimization- Grey wolf optimization -Support Vector Machine

Unit III IMPROVING DEEP LEARNING

Introduction to deep learning - Shallow Neural Networks – Radial Basis Function Neural Network -Planar data classification with a hidden layer -Layers in Neural Network-Convolution and its types-Pooling layers and its types- Building your Deep Neural Network: step by step- Deep Neural Network - Hyperparameter tuning, Batch Normalization.

Unit IV DEEP CONVOLUTIONAL MODELS: CASE STUDIES

1D, 2D, 3D Convolutional Neural Network, Basic structure of Convolutional Network – Overfitting-Activation ReLU - Case studies: LeNet, Alex net, VGGNet, GoogLeNet – RNN- Design of New architectures.

Unit V DATA TO KNOWLEDGE

Data Preparation- Numerical Measure- Confusion Matrix- Visualization-Applications of CNN–YOLO – SSD- Faster RCNN Object Detection, MNIST Image Classification - Face Recognition - Natural Language Processing, Speech Recognition via Spectrogram- 3D-Pose Estimations using Deep learning algorithms.

TOTAL : 45 HOURS

Text Book

1) Dr. S Lovelyn Rose, Dr. L Ashok Kumar, Dr. D Karthika Renuka, Deep Learning Using Python, Wiley, 2019,

References

- 1) Bishop, C., M., Pattern Recognition and Machine Learning, Springer, 2006
- 2) Yegnanarayana, B., Artificial Neural Networks PHI Learning Pvt. Ltd, 2009
- 3) Satis Kumar, Neural networks: A Classroom Approach, Tata McGraw-Hill Education, 2000

9

After successful completion of this course, the students should be able to

- 1) Measure microwave signals and parameters
- 2) Analyze the performance behaviour of microwave components
- 3) Analyze the performance of optical components

Pre-requisite

Transmission lines and waveguides

			(3/2	/1 indic	cates str			SO Maj ation) 3-		2-Mediur	n, 1-Wea	ak			
COs		Programme Outcomes (POs) and Programme Specific Outcome (PSOs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	2	3					2		3	3	3	3	
CO2	3	3	2	3					2		3	3	3	3	
CO3	3	3	2	3					2		3	3	3	3	

List of Experiments

- 1) Study of Microwave Components
- 2) Reflex Klystron Mode Characteristics
- 3) Characteristics of Gunn Oscillator
- 4) Measurement of Impedance
- 5) Measurement of Frequency, Wavelength, VSWR
- 6) S parameter measurement of Isolator & circulator
- 7) Measurement of Directivity and Coupling coefficient of directional coupler
- 8) Design of microwave integrated circuits based on directional coupler
- 9) Study of Resonant characteristics of Microwave integrated circuits
- 10) DC characteristics of LED and LD
- 11) DC characteristics of PIN PD
- 12) DC characteristics of APD

TOTAL: 30 HOURS

U15EC706R

COMPREHENSIVE REVIEW

Course Outcomes

After successful completion of this course, the students should be able to

- 1) Analyse the semiconductor devices and design digital circuits.
- 2) Apply the importance of Transforms in signals analysis and analyse the features of electromagnetics and wave guide
- 3) Analyse the analog & digital communication systems fundamental of applications

			(3/2	/1 indic	cates str		,	SO Maj ation) 3-		2-Mediun	n, 1-Wea	ak			
COs		Programme Outcomes (POs) and Programme Specific Outcome (PSOs)													
205	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	3	2	2	2	2	2	1	2	2	1	3	3	
CO2	3	3	2	3	1	1	2	2	1	2	2	1	3	2	
CO3	2	3	3	3	3	1	2	2	1	2	1	1	3	3	

Unit I ELECTRONIC DEVICES AND ANALOG CIRCUITS

Energy Band in Silicon Intrinsic and Extrinsic – Diffusion Current – Drift Current – Mobility – Resistivity. Diodes – P-N Junction – Zener Diode – Tunnel Diode – BJT – JFET – MOS – Transistor – LED – PIN Diode. Diodes – Clipper – Clamper – Rectifier – Biasing – Stability of Transistor – Types of Amplifiers – Op-Amp – CMRR – Slew Rate – 555 Timers – Basic Circuit Theory Concept.

Unit II DIGITAL ELECTRONICSAND MICROPROCESSOR

Logic Gates – Boolean Algebra – Boolean Laws – K-map Realization – Combinational and Sequential Circuits – Code Conversion. 8085 Architecture and their Interfaces –Instruction Sets – Assembly Language Program

Unit III SIGNALS AND SYSTEMS

Types of Signals – Continuous and Discrete Time Signals – Classification of signals – Continuous and Discrete Time Fourier Transforms – DFT and FFT – Z Transforms – Sampling Theorem – Linear Time in Varient Systems – Convolutions - Linear and Circular Convolutions.

Unit IV ELECTROMAGNETICS AND TRANSMISSION LINES AND WAVEGUIDES

Divergence - Curl - Gauss law - Stokes Theorem - Ampere Circuital Law - Maxwell's

9

9

9

Equations – Differential Form and Integral Form – Pointing vector– Characteristics Impedance – Boundary Conditions – Cut off Frequencies.

Unit V COMMUNICATION SYSTEMS (ANALOG & DIGITAL)

9

Principles of Modulations – SNR for Analog Modulation Methods – Digital Pulse Modulation Schemes – Generation and Detection – Digital Keying Techniques – Multiple Access Techniques (CDMA, TDMA, FDMA).

TOTAL : 30 HOURS

<u>ECE</u>

U15EC1008R

MOBILE TECHNOLOGY AND ITS APPLICATIONS

3 0 0 3

Course Outcomes

At the end of each unit, the students will be able to

- 1) Analyze the 1G and 2G Technologies.
- 2) Explain the 2.5G evolutions
- 3) Analyze the principles of 3G and UMTS
- 4) Analyze the evolutions of 4G
- 5) Summarize the various wireless security applications and solve the mobile phone faults

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	3		1		1	1	3
CO2	3	3	3	3	3	3		1		1	1	3
CO3	3	3	3	3	3	3		1		1	1	3
CO3	3	3	3	3	3	3		1		1	1	3
CO4	3	3	3	3	3	3		1		1	1	3

Unit I 1G and 2G

First Generation (1G): 1G Systems – General 1G System Architecture – Generic MTSO Configuration – Generic Cell Site Configuration – Call Setup Scenarios – Handoff – Frequency Reuse – Spectrum Allocation – Channel Band Plan Second generation (2G): Enhancements over 1G Systems – Integration with Existing 1G Systems – GSM – IS-136 System Description – IS-95 System Description – iDEN – CDPD Channels

Unit II 2.5G Generation

Enhancements over 2G – Technology Platforms – General Packet Radio Service (GPRS) – Enhanced Data Rates for Global Evolution (EDGE) – High-Speed Circuit Switched Data (HSCSD) – CDMA2000 (1XRTT) – WAP Migration Path from 2G to 2.5G to 3G.

Unit III 3G Generation

Introduction – Universal Mobile Telecommunications Service (UMTS) – UMTS Services – The UMTS Air Interface – Overview of the 3GPP Network Architecture – Overview CDMA2000 – Commonality Between WCDMA/CDMA2000/CDM Universal Mobile Telecommunications Service (UMTS): Introduction – UMTS Basics – The WCDMA Air Interface, The UTRAN Architecture – Handover – UMTS Core Network Evolution.

Unit IV 4G and Beyond

Introduction to LTE -A-Requirements and Challenges – Network architectures – EPC – E-UTRAN architecture – Mobility management – Resource management – Services – Channel – logical and transport channel mapping – downlink/uplink data transfer – MAC control element – PDU packet formats – scheduling services – random access procedure – Objectives of 5G- Architecture – Features and benefits 09

09

Unit V Wireless Security and Mobile Phone Service

Introduction – Finger Print – Classification of major security attacks against RFID systems – GSM Security – Barcode scanner technology features and applications – QR code – BAR code – OTP – AirDrop. Mobile phone Service: Parts in the mobile phones -Mobile phones assembling and disassembling –motherboard - Mobile Operating Systems - Fault finding - Advanced troubleshooting techniques.

TOTAL : 45 HOURS

TEXT BOOKS

1) Clint Smith, P.E, Dannel Collins, "3G Wireless Networks" 2nd edition, Tata McGraw-Hill, 2008.

REFERENCES

- 1) Vijay K.Garg, "Wireless Network Evolution- 2G & 3G" Pearson, 2013.
- T.S Rapp port, "Wireless Communications" Principles and Practice, Second Edition, Pearson Education/ Prentice Hall of India, Third Indian Reprint, 2013.
- 3) JochenH.Schiller, "Mobile Communications", 2/e, Pearson, 2014.
- 4) SassanAhmadi, "LTE-Advanced A practical systems approach to understanding the 3GPP LTE Releases 10 and 11 radio access technologies", Elsevier, 2014

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E/B.Tech. Semester VIII 2015R (CBCS) Branch: Electronics and Communication Engineering

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit	Total Contact Hours
Practical							
1	U15EC801R	Project Work	0	0	24	12	360
Total Credits						12	

Approved By

Chairperson, Electronics and Communication Engineering BoSMember Secretary, Academic CouncilChairperson, Academic Council & PrincipalDr.R.S.SabeenianDr.R.ShivakumarDr.S.R.R.Senthil Kumar

Copy to:-

HOD/Electronics and Communication Engineering, Eighth Semester BE ECE Students and Staff, COE